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Abstract— There is a growing interest in the analysis of
hyperglycemia and its relationship with other pathologies.
The level of glucose in blood is regulated by the flux/reflux
and controlled by hyperglycemia hormones and hypoglycemic
insulin. Glycemic profiles are characterized by a nonlinear
and nonstationary behavior but also influenced by circadian
rhythms and patient daily routine which introduce quasi–
periodic trends into them.

This type of signals are commonly analyzed by Detrended
Fluctuation Analysis (DFA) which states that the control system
in charge of regulating the glucose level usually holds a long–
range negative correlation. But there is an inconsistency about
the windowing lengths, as no standard or rules are set.

This work studies the influence of the windowing length
sequence, and shows that there is a need for selecting the
optimal values in order to obtain a good differentiation between
different groups, and these values are somehow determined by
signal characteristics.

I. INTRODUCTION

In the last years, there has been a great interest in the

analysis of hyperglycemia and its relevance or association

with other cardiovascular pathologies or illnesses. The level

of glucose in blood is regulated by the flux (ingestion and/or

breakdown) and the reflux (uptake and/or storage), and

controlled by hyperglycemia hormones and hypoglycemic

insulin. This physiological control system usually holds a

long–range negative correlation [1].

Physiological systems are thought to be regulated by com-

plex and nonlinear processes. These systems not only exhibit

a stationary or periodical behavior, but they also show a

nonpredictable, chaotic, nonlinear and nonstationary one [2].

Recently, nonlinear methods, such as entropy estimations or
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data complexity statistics, have been applied to the analysis

of biological signals, as they provide better and more reliable

results for these type of systems, where traditional linear

methods lack of robustness or characterization depth as they

implicitly assume the stationarity of the signal [3], [4].

Most of the studies on hyperglycemia use the regularity

estimator metric known as Detrended Fluctuation Analysis

(DFA). These studies are aimed at characterizing the power–

law correlations existing in glycemic time series. DFA is a

signal regularity measure that estimates the entropy of a time

series by allowing the detection of long–range correlations

embedded in an apparently nonstationary data series. As

it only considers the fluctuations from local trends, DFA

has the ability to avoid the spurious detection of presumed

long–range correlations that are artifacts of nonstationarity

or introduced by external trends. On the other hand, DFA is

quite sensitive to the data–set length N . If the time series is

short, DFA may exhibit large fluctuations [5], [6].

DFA consists in estimating a modified root mean square

of a random walk over a set of signal lengths. Different

authors define a number of ways for segmenting the signals

in order to carry out their analysis. However, there is not

an unanimous way of doing it. For example, [5] sets the

maximum value to the length of the signal (N ), whereas [7]

establishes it on N /4 and [8] on N /10.

The results obtained by DFA are indicated by the value

of an output parameter known as the scaling exponent α.

Large values of α denote smoother and more predictable

time–series. Different authors establish a number of intervals

for power–law correlations in terms of α. For example, in

[5], 3 intervals were defined. The first one (0,0.5) accounts

for different type of power–law correlations, the second one

(0.5,1] denotes persistent long–range power-law correlations

in the signal and finally, if α > 1, it entails that correlations

exist but cease to be of a power–law form. Other works such

as [7], set a boundary for α in 0.5. If α is below 0.5, data are

anti–correlated, whereas if α is greater than 0.5, the signal

can be considered long–range correlated. In the context of

glycemic time series, an indication of hyperglycemia in

patients could be the segmentation proposed in [9], where if

α is greater than 1.5, a positive correlation exists, otherwise,

a negative correlation is considered.

This paper aims to characterize the influence of the DFA

windowing sequence, illustrated by means of a segmentation

study of glycemic time series from healthy controls (HC),

metabolic syndrome (MS) patients (considered as a predia-

betic condition) and type 2 diabetes mellitus (DM) patients
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from the internal medicine unit of a university hospital. The

objective of the work was to propose a robust scheme for

setting an optimal windowing sequence that provides the

best separation among signal classes. The experimental set

was obtained at the Intern Medicine Unit of the University

Hospital of Mostoles, Madrid (Spain) [10].

II. METHOD

The method proposed is based on the DFA metric. This

measure has provided good results in previous glycemic

series studies [1], [9], [10], where more common similar

metrics such as Approximate Entropy (ApEn) or Sample

Entropy (SampEn) failed to discern among record types,

despite parameterization studies.

DFA is computed for a series of window lengths, and

then a statistical analysis is carried out to find the optimal

length value for signal segmentation. These method steps are

described next.

A. DFA computation

DFA is computed as a modified root mean square of a

random walk. The DFA algorithm is as follows:

Given an input time–series u(n) with n = 0, 1, . . . , N − 1
(with N = 288 in this case), the first step is to generate the

random walk [6] by integrating u(n):

U(k) =
k

∑

i=0

u(i)− ū,with k = 0, 1, . . . , N − 1 (1)

where ū denotes the mean value of the complete time–series

u(n). Some researchers consider that if records are not long

enough, this integration could be omitted [11]. However,

we chose to include this step to follow the standard DFA

algorithm.

The resulting integrated sequence U(k) is then windowed

according to a length parameter Li. The specific values of

L will be studied and defined in Sec. II-B. This parameter

represents the length of non–overlapping rectangular time

windows. We will refer as M the maximum number of

windows of length Li that can be allocated in the time series

of length N .

Inside each window Wj , j = 1, . . . ,M of length Li, a

least–square line is fitted to the data. Then, using these

approximation lines, an estimate of the local trend at each

point k, denoted as UWj
(k), is computed. This local trend

is removed from the data, U(k) − UWj
(k), with k ∈ Wj ,

and the mean square fluctuation FL of the integrated and

detrended time series can then be computed for a specific

window length, according to [5]:

FL =

√

√

√

√

1

N

N−1
∑

k=0

(

U(k)− UWj
(k)

)2
(2)

The calculation of FL is repeated for a number of different

lengths Li up to a maximum one. The result of the algorithm,

the scaling exponent α, is obtained as the slope of the line

 

 

α = 0.996

log(L)
0.5 1 1.5 2 2.5 3 3.5

lo
g
(F

L
)

0

0

-1

-2

-3

Fig. 1. Graphical example of the process involved in the computation of α.
Horizontal axis corresponds to the log scale of length values. Vertical axis
corresponds to log values calculated for fluctuation F for different lengths.
Dotted line represents the least squares fitted line.

relating the log–log plot of FL against Li, [5], FLi
∝ Lα

i .

This process is graphically illustrated in Fig.1.

Other researchers, like [6], [7], [12] propose the compu-

tation of an instantaneous DFA coefficient and even others

recommend the use of 2 scaling exponents as in [7], [9], one

for short–range and the other for long–range correlations. We

again chose to follow the standard DFA scheme.

B. Window Length Sequence

The scaling exponent greatly depends on the proper selec-

tion of the windowing sequence L = {L1, L2, . . . , Ln}.

In this work, we decided to consider different windowing

sequences that spanned up to the complete signal length, for

characterization purposes. Two type of sets were considered,

in the first type all the windowing sequences had an initial

value equal to the DFA order plus 2 [5], L1 = 3, being DFA

order the order of the polynomial used in the detrending step.

In the second set type all windowing sequences had the same

last value equal to the signal length, this is, Ln = 288.

Each windowing length consider had to satisfy

Li ∋ mod(N,Li) = 0, so no samples were discarded.

The possible windowing lengths to be considered were

Li = {3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144, 288}.

C. Statistical analysis

The resulting α values were screened with the Shapiro–

Wilk normality test. This test is recommended when the

number of observations is low, as this was the case. The null

hypothesis states that data come from a normal distribution.

If pValue is lower than 0.05, the null hypothesis can be

rejected. If data were assumed to come from a normal

distribution, a further Student T-test was performed so as

to provide an statistical value to be used as the input for

a signal qualitative segmentation process (DM vs. CH vs.

MS). The lower the probability, the larger the difference

between mean values of each distribution, which implies

that a better segmentation could be obtained. If data could

not be considered to be generated by a normal distribution,

the Mann–Whitney U significance test was used in order to

compare median values instead.
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The confidence intervals for the α results were estimated

as:

CI = [µ− 2σµ, µ+ 2σµ] (3)

where µ corresponds to the mean and σµ to the Standardized

Mean Error (SME), in case values were assumed to come

from a normal distribution. The SME is computed as:

σµ =

√

(
∑

n
i=1

(αi−µ)2

n
)

√
n

=
σ√
n

(4)

Otherwise, µ and σµ correspond to the median and me-

dian absolute deviation (MAD), respectively, where MAD is

obtained then as:

σµ = median
n

{|α(n)−median {α(n)}|} (5)

The variable n accounts for the total number of values on

each data group.

III. EXPERIMENTAL DATASET

The glycemic profile database used in this work considers

10 patients with MS, 10 patients with type 2 DM and

10 control subjects. All of them were selected from the

outpatient internal medicine and vascular risk clinics at the

Móstoles University Hospital. DM patients were selected

according to a fasting glucose level larger than 126 mg/dl

(confirmed in a second measurement) and MS patients were

selected according to the NCEP–ATPIII criteria [13].

A glycemic value sample was acquired every 5 minutes,

during a time period of 24 hours. The signal lengths were

limited to a total of 288 samples.

A deeper characterization of each group considered for the

analysis can be found in [10].

IV. RESULTS

Segmentation results between DM, HC and MS groups

are shown in Fig.2 for each of the different L considered.

Fig.2.a show the results for the increasing L in terms of the

last windowing length Ln considered for the detrending step

of DFA, for a sequence starting in L1=3 while Fig.2.b shows

them in terms of the initial windowing length in the sequence

when the maximum length is fixed at Ln = 288.

It can be appreciated that for shorter sequences (initial

ones in Fig.2.a and last ones in Fig.2.b) the variability of

the scaling exponent α is larger than for the larger ones.

For increasing L (Fig.2.a) DM has always larger value than

HC or MS, this implies softer time–series, less variability

and larger regularity. For decreasing windowing sequences

(Fig.2.b) DM presents a lower value for shorter windowing

sequences which increases when increasing the number of

windows in the sequence.

When an increasing windowing sequence L is considered,

segmentation between the three groups simultaneously only
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Fig. 2. Scaling exponent α confidence intervals for different lengths
considered for the (a) last windowing length in sequence and (b) initial
windowing length in the sequence for the three classes: healthy controls
(HC, blue squares), patients with metabolic syndrome (MS, red circle) and
type 2 diabetes mellitus patients (DM, black triangle).

occurs when Li ≥ 72 samples (6h), Table I shows statistical

probability for Student T-Test as data could be assumed to

come from a normal distribution (p ≥ 0.3), segmentation

between DM and HC occurs for any windowing sequence

with Ln ≥ 12 (1h) with p ≤ 0.020.

If a decreasing windowing sequence L is preferred, seg-

mentation only takes place between the three groups simul-

taneously if L1 = 3 (results are shown in Table I.(d)).

Separation between DM and HC occurs for windowing

sequences with L1 = {4, 6, 8, 9, 72, 96, 144} (p ≤ 0.047).

V. DISCUSSION

As expected, windowing sequences considering a larger

number of lengths provide scaling factors with less variability

(narrower confidence intervals). Lower α are generally asso-

ciated with HC rather than with DM patients if increasing

widowing sequences are chosen (Fig.2.a) just as in [1] or

as in [9], not being the case when decreasing windowing

length are considered, as HC show larger α values for larger

windowing sequences than for shorter ones.

This phenomenon needs to be looked at carefully, as

for increasing L with Ln < 12 which is approximately

1h duration, no segmentation is obtained, this tells us that

the system in charge for glycemic regulation is not yet
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TABLE I

STATISTICAL RESULTS FOR INCREASING L, SHOWN ONLY FOR THOSE

WHERE SEGMENTATION BETWEEN THE THREE GROUPS OCCUR. (A)

Ln = 72, (B) Ln = 96, (C) Ln = 144 AND (D) Ln = 288

MS DM MS DM
HC 0.041 0.000 HC 0.028 0.000
MS 0.005 MS 0.004

(a) (b)

MS DM MS DM
HC 0.018 0.000 HC 0.023 0.001
MS 0.008 MS 0.034

(c) (d)

activated (Fig.2.a). Then segmentation is clearer in mid–term

windowing sequences (1.8 < log10(Ln) < 2.2) where not

only DM are isolated from HC but both are also differenti-

ated from MS. When considering the last windowing length

(Ln = 288), segmentation is obtained but p increased, this

can be due to residual effects or influences in the glucose–

regulation system which are out of our boundaries. This is

even more evident when considering decreasing windowing

length (Fig.2.b) as if log10(L1) > 1.2 DM patients show

lower scaling exponent, which tell us that DM signals are

less regular or predictable (more complex) what is not

physiologically justifiable and against all actual literature.

Finally from what has been studied in this paper we can

infer that the effects of the glucose regulation system has

more to do with mid–term or long–term effects rather than

with short–time effects.

VI. CONCLUSION

In this paper, a detailed characterization analysis of the

windowing sequence length influence on DFA segmentation

of glycemic profile records has been presented. Analyzing

glucose levels in blood is a key factor for glucose metabolism

disturbance detection and it can be related to other major

cardiovascular illnesses and death.

On previous studies, only segmentation between DM and

HC [9], [10] or between SV and NSV [1] classes was

reported. Other authors defined and used different maximum

windowing sequence lengths with no clear rationale. In our

study, we have illustrated the fact that by choosing the

appropriate sequence length, segmentation can be obtained

not only between DM and HC classes, but also between DM

and MS or MS and HC patients, which could allow experts

clinicians to do an earlier prognosis and treatment.

Choosing and adequate windowing sequence is crucial to

obtain good segmentation results. Depending on the kind of

effects that the method should address, short–term, mid–term

or long–term effects, different windowing sequences with

larger maximum lengths should be chosen so as to obtain

reliable and robust results.

If the windowing sequence was obtained in an arbitrary

way, the expected results could be masked by DFA prop-

erties, and result in no class segmentation obtained, even

when there is an underlying segmentation that an adequate

windowing sequence could have unveiled.

As current and further work, a deeper study concerning

windowing sequences lengths is presently being done, using

different biosignal databases and types. The consideration

of more than one scaling exponent is being also studied

as proposed in [7], [14] with an automatic data dependent

threshold selection to establish where the boundary between

each different scaling exponent is located. Finally, the evo-

lution of an adaptive instantaneous scaling exponent is being

evaluated over several types of signals.
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