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Abstract— The employment of nonlinear analysis techniques
for automatic voice pathology detection systems has gained
popularity due to the ability of such techniques for dealing
with the underlying nonlinear phenomena. On this respect,
characterization using nonlinear analysis typically employs
the classical Correlation Dimension and the largest Lyapunov
Exponent, as well as some regularity quantifiers computing the
system predictability. Mostly, regularity features highly depend
on a correct choosing of some parameters. One of those, the
delay time τ , is usually fixed to be 1. Nonetheless, it has
been stated that a unity τ can not avoid linear correlation
of the time series and hence, may not correctly capture system
nonlinearities. Therefore, present work studies the influence
of the τ parameter on the estimation of regularity features.
Three τ estimations are considered: the baseline value 1; a τ
based on the Average Automutual Information criterion; and
τ chosen from the embedding window. Testing results obtained
for pathological voice suggest that an improved accuracy might
be obtained by using a τ value different from 1, as it accounts
for the underlying nonlinearities of the voice signal.

I. INTRODUCTION

The automatic detection of voice pathologies is an in-
creasingly important issue, whose main aim is to develop
computer-aided diagnostic systems, enabling an objective
assessment on the presence of pathologies, reducing the eval-
uation time and subsequently improving the diagnosis and
clinical treatment given to each patient [1]. On this regard,
the nonlinear behaviour involved in the voice production
process should be taken in account, since it is product of
multiple physical phenomena, such as the nonlinear pressure-
flow relation in the glottis, the delayed feedback from
mucosal wave, the nonlinear stress-strain curves of vocal fold
tissues, nonlinearities associated with vocal fold collision [2],
or asymmetries between the right and left vocal folds [3].

However, the nonlinear analysis of time series, requires the
reconstruction of the underlying dynamical behaviour of the
system, so that its states and its evolution, are represented on
a m-dimensional space. The most common technique for this
purpose, is based on the Time-Delay Embedding Theorem
[4], which depends on the computation of two parameters:
the embedding dimension m and the time delay (or time lag)
τ . Then, by having this reconstruction, a feature extraction
process is possible, on which the Correlation dimension (d2)
and the Largest Lyapunov Exponent (Λ) emerge as the most
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typically used characteristics for this purposes. In addition,
a set of features called regularity features, are employed
to quantify the regularity or predictability of the system.
Nonetheless, this features depend on the tuning of some
parameters, such as the pattern length m, time delay τ , and
tolerance r, and which might heavily affect the estimation of
regularity. On this regard, r is tuned as a constant α (which
varies between 0 and 1) multiplied by the standard deviation
of the time series, thus allowing consistency on comparisons
between samples having different amplitude [5]. Moreover,
and despite m and τ are essentially the same parameters as in
the reconstruction process, the embedding is not a part of the
regularity computation and, except for τ , the parameter m
has a different interpretation on how it should be chosen [6].
With that in mind, it is recommended to fix m = 2, as its aim
is not to produce a good reconstruction of the time series,
but rather to provide an improved estimation of predictability
[6]. Finally, the parameter τ is typically fixed to 1 with no
apparent reason but simplicity. However, it has been pointed
out that using a unity time delay might mask the underlying
nonlinearity of the time series which is mainly obscured
by the linear autocorrelation of the signal [6]. For dealing
with such drawback, it is proposed in [6], to use the same
time delay τ of the reconstruction process, computed using
the Average Mutual Information (AMI) criterion [4]. This
might minimize irrelevance by avoiding temporal correlation,
and therefore might improve the estimation of regularity.
Nonetheless, the AMI criterion suffers from some drawbacks
which might affect the quality of the regularity estimator.
Among other, a probability computation is necessary. As it
employs histograms, the criterion is dependant on the number
of bins chosen to build the histogram. Moreover, AMI uses
the first zero of a mutual information function, having no
obvious reason to choose this over other minima on the
function [7]. Above shortcomings suggest that neither the
unity delay nor the value obtained with the AMI criterion,
might be optimal for obtaining the time delay τ for the
regularity estimation.

With that in mind, this work proposes the employment
of a τ obtained from the embedding window, and which
might provide a more robust approach that the AMI criterion.
The aim is to explore if an improved performance on
automatic pathological voice detection labours, is obtained
by using such approach. Experiments include testing on a
voice disorder database, using three τ estimations: τ using
the baseline 1, τ computed using the AMI criterion, and τ
computed from the embedding window.
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II. THEORETICAL BACKGROUND

A. Embedding and embedding parameters

The nonlinear analysis of time series mostly employs
a procedure called embedding, to represent the dynamical
evolution of the system on a m-dimensional space, called
phase or state space, and where all states of the system and
its evolution are described.

Let s⃗ss = {x[1], x[2], · · · , x[N ]} be a time series of length
N , such that the reconstructed states are of the form:

x⃗xx[t] = {x[t], x[t+ (m− 1)τ ], · · · , x[t− dw]} (1)

where m is the embedding dimension and τ is the time
lag, and where both parameters are chosen no to confuse
dynamics in phase space.

Despite the usual embedding procedure usually focuses on
choosing τ and m separately, some authors have stated on the
importance of considering directly a quantity termed embed-
ding window dw = (m−1)τ , as which relates them both [8].
Following that line of thought, a procedure for estimating the
embedding window is presented in [8], such that it provides
the optimal reconstruction of the underlying dynamics for an
observed time series by combining modelling and embedding
into a single procedure. To achieve this, they assume that
the optimal model that describes the data, is the one which
minimises an information criterion called Description Length
(DL). By using local constant models, the description length
of the data is then computed for increasing values of dw.
The value which presents the Minimum Description Length
(MDL) is then chosen as the optimal.

The procedure is as follows: Let x[t] be a point in the
time series, whose reconstructed state vector is x⃗xx[t]. Its
successor would be x[s + 1], where s is chosen for being
the nearest neighbour, x⃗xx[s] of x⃗xx[t]. Then x[t+1] = x[s+1],
and therefore, the prediction error is then calculated as
the difference between the successor to that point and the
successor to its nearest neighbour:

e[t+ 1] = x[t+ 1]− x[s+ 1] (2)

That modelling scheme is termed local constant modelling
and provides a estimation of the DL of the time series as
[8]:

DL(⃗sss) ≈ N − dw
2

ln

[
1

N − dw

m∑
i=dw+1

e2i

]
+

dw
2

[
1

dw

dw∑
t=1

(⃗sss− sss)2

]
+ dw +DL(dw) (3)

where sss is the mean of the time series, and dmax
w = (m−1)τ

is an upper limit on the minimisation procedure.
The procedure could be summarized as follows: Minimize

equation (3), by estimating the model prediction error of
equation (2), for increasing values of dw. The minimum for
certain dw will be the optimal embedding window [8].

B. Characterization

Having the time series represented on phase space, it is
then possible to extract features. Two types of characteristics
are considered in this work, the classical nonlinear dynamics
features, and a set of regularity features.

1) Nonlinear dynamic features: The two most classical
features on this context are the Correlation Dimension and
the Largest Lyapunov Exponent.

The Correlation dimension (d2) quantifies with a dimen-
sion the autosimilarity of an embedded time series [4]. For a
time series of length N , a quantity, termed correlation sum,
is firstly defined as:

C(r) = lim
n→∞

1

N2

n∑
i,j=1

Θ(r − ∥x⃗xx[i]− x⃗xx[j]∥) (4)

where Θ is the Heaviside function, r is a tolerance measure,
and x⃗xx[·] are reconstructed state vectors as in (1).

It is expected that as r → 0, then C(r) → κd2 , where κ
is constant, and d2 is thus the estimation of the correlation
dimension.

On the other hand, the Largest Lyapunov Exponent (Λ), is
a measure of the divergence of nearby orbits in phase space,
thus representing one of the basic attributes of the nonlinear
dynamic systems: sensitivity to initial conditions.

Let x⃗xx[i] and x⃗xx[j] be two states in the phase space, with
distance defined as δ0 = ∥x⃗xx[i] − x⃗xx[j]∥ ≪ 1; and let δ△n =
∥x⃗xx[i+△n] − x⃗xx[j +△n]∥ be the distance some time later
△n. Then, Λ will be determined by:

Λ(δ0) = lim
∆n→∞

lim
∥δ0→0∥

1

∆n
log

∥δ∆n∥
∥δ0∥

(5)

2) Entropy-based quantifiers: Several complexity mea-
sures have been developed to measure system regularity. One
of the most popular, termed Approximate Entropy (ApEn), is
proposed in [9].

ApEn is intended to quantify the reproducibility of tem-
poral patterns in a time series through calculation of the
”logarithmic likelihood” that in a data set of length N ,
patterns of length m+1 are within tolerance r of each other,
given that patterns of length m are within tolerance r of each
other [6]. ApEn is defined as follows:

ApEn = ϕm(r)− ϕm+1(r) (6a)

ϕm(r) =
1

N − (m− 1)τ

N−(m−1)τ∑
i=1

logCm
i (r), (6b)

Cm
i (r) =

Bm
i (r)

N − (m− 1)τ
(6c)

where r is a tolerance measure, and Bm
i (r) is the number

of j such that |x⃗xx[i]− x⃗xx[j]| < r.
Since ApEn is biased due to a phenomena called self-

matching, the Sample Entropy (SampEn) is proposed in [5].
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SampEn is defined as follows:

SampEn = − log

(
Am(r)

Am+1(r)

)
(7a)

ϕm(r) =
1

N − 1− (m− 1)τ

N−(m−1)τ∑
i=1,i̸=j

Cm
i (r) (7b)

III. EXPERIMENTAL SETUP

A. Database

Testing has been carried out with the Massachusetts Eye
and Ear Infirmary [10]. Voice disorders database. The reg-
isters contain the sustained phonation of the /ah/ vowel
from patients with a variety of voice pathologies disorders,
of organic, neurological and traumatic nature. The registers
were previously edited to remove the beginning and ending
of each utterance, removing the onset and offset effects in
these parts of each utterance. Database is composed by 173
registers of pathological speakers and 53 of normal speakers
as those selected by [11].

B. Experiments

Figure 1 presents an outline of the employed experimen-
tation procedure for experimentation, whilst their stages are
explained next.

..Time
Series

.
Preprocessing

. Normalization.

Windowing

.
Characterization

. ApEn-SampEn.

d2-Λ

. Classification.
k-nn

Fig. 1. Outline of the automatic voice pathological system, based on
regularity and nonlinear dynamics features, presented on this work

On the Preprocessing stage all voice recordings are z-score
normalized, thus the mean of the time series becomes one
and the standard deviation becomes zero. The z-score is as
follows:

z − score :
(⃗sss− sss)

std(⃗sss)
(8)

In order to employ a short time analysis, 50% overlapped
square windows of 55 ms of duration are used as suggested
in [12], therefore, splitting each single recording into frames.

On the Characterization stage two experiments are to be
considered:

1) Each voice frame is characterized by means of ApEn
and SampEn. The parameter m is fixed to 2, whilst
to test out the validity of the methodology at different
tolerance levels, the α parameter is varied from 0.1 to
0.35, where α is such that r = α std(·). Furthermore,
three τ values are considered: First, with τ equal to
1, as its typical on nonlinear characterization using
regularity features. Second, with τ tuned using the
AMI criterion. Third, with τ tuned as the value given
by τ = (dw)/(me − 1), where dw is chosen with the
criterion suggested in last section, and me is chosen
using the False Nearest neighbour criterion (FNN) [4].

2) Each voice frame is characterized by means of d2 and
Λ, by using the me parameter of the FNN criterion
and τ chosen with the AMI and MDL criterion.

Finally, on the Classification stage, a k-nn classifier is used
whose neighbours are varied from 3 to 11. For validation
of results a leave-one out procedure is employed, such that
a single recording is chosen to validate results, while the
remaining are utilized for training the classifier. That same
procedure is repeated until having used each single recording
for validation. Also, the decision on the class membership of
a given test signal, is taken based on majority voting of the
class membership of each one of the frames which compose
the signal.

C. Results

Figure 2 presents the accuracy for the both ApEn and
SampEn, by using a k-nn classifier and varying the number of
neighbours from 3 to 11. Each graphic depicts the accuracy
for a particular α value starting from 0.1, shown on the upper
left corner, and finishing on 0.35 on the bottom left corner.
The three considered τ parameters are also depicted in each
plot.
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Fig. 2. Accuracy to variations on the number of neighbours, on a k-nn
classifier, using both ApEn and SampEn as features. Each figure indicates
the accuracy obtained using a different α parameter, varied from 0.1 to 0.35
on 0.05 steps.

Figure 3 presents the classification accuracy, for the k-nn
classifier as explained before, and by using d2 and Λ features
in conjunction. Only two τ parameters are considered: using
the AMI criterion and the MDL criterion.

IV. DISCUSSIONS AND CONCLUSION

As presented in Figure 2, the classification accuracy of
ApEn and SampEn is higher using the τ chosen with the
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Fig. 3. Accuracy to variation on the number of neighbours, on a k-nn
classifier. Both d2 and Λ were used as features

AMI and the MDL criterion compared to the unity τ of the
baseline. This result might indicate that the employment of
a delay time, chosen with some criterion which minimizes
the influence of linear autocorrelations, might improve the
performance on pattern recognition labours. As indicated in
[6], when the autocorrelation of the signal decays rapidly,
a unity delay time will be sufficient to provide an accurate
measure of signal regularity resulting from the nonlinearities
of the signal. However, as the results suggest, this is not the
case for the voice disorder database.

Results also suggest that the τ chosen with the MDL
criterion might provide an improved performance on patho-
logical voice detection labours, as it is evidenced by the
higher classification accuracy using all α values but α = 0.2.
Moreover, and despite in most of the cases a α value between
0.1 and 0.2 might be sufficient for tuning the regularity
parameters, the wider range we present serves to provide
insight in the higher robustness at different tolerance levels,
by using the MDL criterion rather than the AMI criterion.

Figure 3 present the classification accuracy for d2 and Λ.
As in the previous case, the results are better using the MDL
criterion, obtaining results up to 4% classification points
compared to the delay time chosen with AMI. That might
be explained because when using a τ chosen with the MDL,
a better reconstruction on phase space might be produced,
and hence a higher classification accuracy.

Nonetheless, and despite the increased performance ob-
tained using AMI or MDL, compared to the unity delay time,
both criteria provide information about how to minimize the
irrelevance of the signal produced by the linear temporal
correlation. However, they lack to provide information about
redundancy of the parameter. Having that in mind, it reason-
able to conclude that both criteria might be suboptimal for
choosing the τ parameter for regularity estimation.

Finally, and based on the results presented in this work
we can conclude:

• The τ parameter is a critical value which should be
tuned to improve classification accuracy of the regu-

larity estimators, since the unity τ can not capture the
underlying nonlinearities of time series.

• The MDL criterion for choosing τ might produce an
improved classification performance on both classical
and regularity features, compared to the unity τ and the
one chosen with the AMI criterion

• MDL or AMI criterion might be suboptimal since the
found τ only minimizes the irrelevance of signal, having
no information about the redundancy of the choosing.

As future work we will study different criteria for choosing
the τ parameter, including one that accounts for minimizing
irrelevance and redundancy. Moreover, additional testing will
be performed on other databases in order to validate the
results found in this work.
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