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Abstract—Hemodynamic models have a high potential in 

application to understanding the functional differences of the 

brain. However, full system identification with respect to model 

fitting to actual functional magnetic resonance imaging (fMRI) 

data is practically difficult and is still an active area of 

research. We present a simulation based Bayesian approach for 

nonlinear model based analysis of the fMRI data. The idea is to 

do a joint state and parameter estimation within a general 

filtering framework. One advantage of using Bayesian methods 

is that they provide a complete description of the posterior 

distribution, not just a single point estimate. We use an 

Auxiliary Particle Filter adjoined with a kernel smoothing 

approach to address this joint estimation problem. 

I. INTRODUCTION 

Functional Magnetic Resonance Imaging (fMRI) is an 
imaging modality which dominantly measures the Blood 
oxygenation level dependent (BOLD) effect, which is as an 
end result of the neural activity of the brain. The dynamics 
which arises due to the neural activity is collectively referred 
to as the hemodynamic response and many attempts have 
been made to model this physiological chain of activities. As 
a result the first convincing model (Balloon model) is 
proposed in [1], and also has been completed and enhanced 
by work in [2][3].  

There are many instances reported in literature on 
analysis of experimental fMRI data using the Balloon model 
[4][5][6]. However, at present there is no ideal solution for 
the identification of the Balloon model. Several previously 
published work [7][8] has shown that the parameters of the 
BOLD model is unidentifiable.  The work in [8] carries out a 
sensitivity analysis which shows this while the work in [7] 
estimates the correlation of the parameters using the joint 
posterior distributions estimated by a Particle Filter (PF). 

The poor identifiability of the model makes it difficult to 
conclude on an optimal estimation technique, furthermore 
demands for a complete estimation based on their joint 
posterior probability. Thus, although point estimates of the 
parameters are preferred, due to the unidentifiable nature of 
the physiological parameters more descriptive estimation is 
required. The Balloon model has an input-state-output 
formulation and is well suited to use with posterior based 
Bayesian estimation techniques for fMRI data analysis. The 
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work presented in this paper thus investigates the 
applicability of a novel Sequential Monte Carlo (SMC) 
based joint posterior probability estimation technique. 

State space linearization approaches has been used in the 
joint estimation of the Balloon model parameters in the work 
presented in [4]. They use a local linearization filter in the 
Kalman filter methodology. Other than linearized filter 
approaches, nonlinear filtering strategies have been applied 
for the estimation of the states and parameters from the 
BOLD responses. The work in [6] applies an unscented 
kalman filter (UKF) methodology for fMRI data analysis. 

There are several work related to parameter estimation of 
the Balloon model in literature via the use of PF’s.The first 
application of PF’s to the extended Balloon model is 
presented in [5]. In their work they use a PF for the state 
estimation and an offline maximum likelihood approach for 
the parameter estimation. The work presented in [9] 
discusses the estimation problem but with weight to 
advances in PF, not in the interest of fMRI data fitting, also 
they consider the hemodynamic parameters as known. Work 
in [7] uses an intact PF implementation for both state plus 
parameter estimation, however they do not consider a 
stochastic version of the Balloon model.  

State filtering in nonlinear models similar to the Balloon 
model formulation is a well-studied issue. However, joint 
estimation of states and parameters of the model is still 
under extensive research. Thus as to cater the requirement of 
estimating joint posteriors within a robust filtering 
framework we present an alternate to the methods used in 
[7]. We propose to use an Auxiliary PF, a variant of the 
generic PF and an adjoined kernel smoothing approach. 

The rest of the paper is organized as follows. Section 2 
describes the Balloon model equations. We also describe an 
accurate link between the input stimulus and the neural 
activity which is the input to the Balloon model. Further the 
stochastic formulation of the full model is discussed. In 
Section 3 the Bayesian estimation and the proposed 
Auxiliary PF method with the kernel smoothing approach is 
presented. The simulated results, to evaluate the 
performance of the proposed method are presented in 
Section 4. Section 5 outlines the conclusions of the paper. 

II. SINGLE REGION MODEL 

A. Neuronal Model 

The general formulation for the neural interactions 
(connectivity) is given in [10] as a bilinear state equation 
given by, 
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where A is the intrinsic coupling matrix, C extrinsic 
coupling matrix, B

j
 matrix contains modulation of 

connectivity, zthe neural activity, u the stimulus input and u
j
 

the modulation inputs with M the number of modulatory 
inputs. The subscript   always denotes a time point. Thus for 
a single region, excluding the bilinear terms simplifies to, 

 ̇                                                            

Where a is the self-connectivity, set to -1for stable 
operation conditions and   the input connectivity strength. 
This is the model adopted in this paper. 

B. Hemodynamic Model 

Here, we use the first compelling version of the 
hemodynamic forward model proposed in [1], namely the 
Balloon model, supplemented with a damped oscillator to 
model the blood flow in [2]. The input to the model is 
treated as the neural activity from (2) [3].The full path of the 
model describes the dynamics of the normalised cerebral 
blood flow f, the normalised flow inducing signal  , the 
normalised blood volume v and the normalised 
deoxyhemoglobin content q with ordinary differential 
equations; 
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The BOLD signal y as given in [11] is, 

     (                 )                  

The model parameters are the transit time through the 
balloon   , the signal decay time constant   , the 
autoregulatory time constant   , the stiffness parameter α, 

the baseline blood volume   , resting state oxygen extraction 
  , and the BOLD signal parameters a1 and a2. 

The above equations (2)-(6) can be given in a general 
form of a continues time stochastic nonlinear system 
including uncertainly in the system evolution and additive 
measurement and instrumental noise   , 

                                                              (8) 

                             
                           

where                    are the unobserved states of the 
system,                        the neural and 

hemodynamic parameters,    is an increment of a wiener 
process and B is a weighting matrix.         denotes a 
Normal distribution with mean   and variance   . 

In order to implement the above system and to apply in a 
general filtering framework we use a time discretization of 

equation (8) using a simple first order Euler-Maruyama 
scheme [12]. The resulting state equation is, 

                                                                 

where             , in this case I is a 5 X 5 identity 
matrix. 

III. PARTICLE FILTER FOR JOINT ESTIMATION 

In a probabilistic context the state transition equation (10) 

and observation equation (9) can be respectively given as; 
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In the context of Bayesian estimation the solution to an 
estimation problem is given by the a posteriori density 
        i.e. a posteriori density estimation of a variable at a 
specific time given all the measurements /observations up to 
that time point               . 

The PF is an alternative to approximate Kalman filtering 
for nonlinear systems. PF’s are Bayesian filters 
approximating the probability density functions (PDF) with 

a set of weighted particles [13][14]; {  
    

 } where   
         and   is the no of particles. The particles and 
associated weights are updates recursively at both the time 
update and measurement update. With the weights 

normalized such that ∑   
    

   , the posterior density is 
approximated as, 
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  cannot be sampled from the posterior directly. Thus we 

sample directly from an importance function as detailed in 

[13], where   
  are now the importance weights. We omit a 

comprehensive discussion on PF’s in the paper, which can 
be found in [13] [14] in great detail.  

The PF has several variants such as Sequential 
Importance sampling (SIS), sampling importance resampling 
(SIR) [15], Auxiliary sampling importance resampling 
(ASIR) and regularized particle filter (RPF). To counteract 
the drawbacks in SIR algorithm, the work in [16] introduce 
ASIR constructing proposals that better correspond to the 
true posterior distribution.  In the work presented in the 
paper we use an ASIR filter for the joint estimation of states 
and parameters. 

In order to fully identify the system we need to estimate 
the hidden states   plus the static parameters   of the single 
region fMRI model. In the case where the fixed parameters 
are unknown thejoint posterior is given as; 

                                                 (14) 

We deal with thejoint estimation through theuse of an 

augmented state vector          
 .  
The basic idea of the 

ASIR is to introducesample auxiliary variable,    which is 
the index of the particles at time t. By augmenting the 

4213



  

filtering distribution with this additional auxiliary variable, 
ASIRs consider the target jointdistribution; 

                                        
  (       

 )        (15) 

Thus the APF has to generate samples 
from               and drop the index to generate the 
required samples from               To generate samples 

{    
   

   } the ASIR uses importance sampling with an 

importance density of the form               
 (         

 )         
    

  , where     
  is a measure 

associated with the density  (       
 ) such as the mean, 

mode or a sample.  

 However, the non-dynamics of the parameters will 
create degeneracy. Adding artificial dynamics through a 
random walk model of the parameters is a good option [14] 
although this will result in an artificial loss of information. 
However instead of the random walk modeling for 
parameters, we use a kernel smoothing approach in which 
the latter issue is avoided.  

If the posterior parameter samples and weights {  
    

 } 
are available at time   the parameter posteriors are now 
given by, 
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where   is the kernel smoothing factor with       
and   

 ’s are the kernel location, specified by a shrinkage rule 

that forces the particles to be close to their mean    
  

(√    )  
  (  √    ) ̅ , with  ̅  and    are the 

monte carlo mean and the monte carlo variance of the 
samples respectively. This approach is applied in [17] as an 
extended version of the ASIR in treatment of static model 
parameters. The extended ASIR with the kernel smoothing is 
outlined in Table I. 

Table I:  ASIR with Kernel Smoothing 
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6. Calculate the stage two normalized weights. 

 

 

IV. SIMULATION RESULTS 

As there is no ground truth data available with fMRI data 
the proposed method is evaluated by using simulated data.  
In order to generatethe simulation data we integrate the non-
linear system of stochastic differential equations (10) using 
sampling rate of 0.1s. However, resampling and reweighting 
is performed only at those integration points where the 
measurements are available. In the present work we consider 
a typical fMRI repetition time (TR) of 2s.  

However, due to the poor identifiability of the model, 
fixing some parameters as proposed in literature [8] is a 
good precaution at the stage of model parameterization. As 
the main target of this work is to provide an alternate robust 
platform for joint estimation of the Balloon model 
parameters, we do not discuss the issues relating to 
correlations of the parameters. For demonstrating the 
performance of the proposed method we only estimate the 
parameters         and   . 

For the synthetic data generation, we use the mean values 
reported in [2], for fixed parametersas          
            . Also        and        [10]. The data 
is generated with values                       
   . The ASIR is initialized with the priors given in Table 2 
as reported in [2][10].  

We first generate data for an on/off block input shown in 
Fig. 1(a).The noise levels (low noise) were set to   

    
     and                   Fig. 1(b) shows the simulated 
BOLD signal and the reconstructed BOLD signal while Fig. 
1(c) shows the estimated neural signal. Fig. 2 shows the 
convergence of the mean of the estimated posterior 
distribution during the estimation. Table II gives the final 
posterior of the parameters. The accuracy of the joint 
estimation is evident with the state estimates closely 
agreeing with the true values and joint estimation gives 
robust parameter estimates with low variance in the 
posterior. The proposed joint scheme used only 1000 
particles and used        

 
Figure 1. (a) Input stimulus (b) Simulated (solid red) and 

reconstructed BOLD signal (dashed blue) (c) Simulated and 

estimated neural activity. 
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Figure 2. The parameter convergence for block input of Fig. 1(a) 

(blue) and Simulated values of parameters (red). 

 

In order to evaluate the sensitivity of the method to 
variations in noise, another data set was generated by setting 
  

         and                 (high noise) for the 
same block input of Fig. 1(a). It was observed that the time 
for convergence was still around 60-70 seconds as in the 
previous low noise case. Table III gives the converged 
estimates at six different runs with different particle 
initializations of the ASIR. Last row of Table III gives the 
average of the parameter estimations. Except for parameter 
    the other parameters have a discrepancy from the 
simulated values. This is clearly due to the high noise 
present in the data.   

Thirdly, in order to evaluate the sensitivity of the method 
to different experimental inputs (stimulations) we generated 
data using an event related stimulus shown in Fig. 3(a). The 
noise levels were set to the values of the low noise case of 
the block input. The estimated neural activity using the joint 
estimation is shown in Fig. 3(b), and it is very close to the 
simulated true neural activity. The recursive variation of the 
mean of the estimated posterior is shown in Fig. 4. The 
parameters converged faster, within the 20-40 seconds 
compared to the block input case.  

The results show that the ASIR with the Kernel 
smoothing performs reasonably well under different 
experimental conditions, providing a robust platform for 
fMRI data analysis. 

Table II.  Prior density and Estimated Posterior density of 
model Parameters 

Parameter Prior Posterior 

                              

                                   

                                 

                                  

 

 

Table III. Estimated Posterior density of model Parameters at high 
noise levels in the simulated data for different runs 

Run            

1 0.4906 1.9988 1.5649 1.2200 

2 0.3786 2.0627 1.8681 1.0220 

3 0.3485 1.8713 2.0288 0.8211 

4 0.3982 1.9429 1.8328 1.0038 

5 0.4317 1.9194 1.8786 1.0542 

6 0.4179 2.2139 1.7126 1.2252 

Mean 0.4109 2.0015 1.8143 1.0577 

V. CONCLUSION 

In conclusion we propose a new method for 
jointstate/parameter estimation of nonlinear fMRI models by 
usinga kernel smoothing method with the ASIR.The most 
common method used for fMRI data analysis is the General 
Linear Model (GLM). The GLM is the best method when it 
comes to activation studies [5], as the nonlinear model based 
analysis has been unable to show significant differences in 
the activation mapscompared to the GLM [8] created 
activation maps, while also is computationally much 
expensive.On the other hand, the nonlinear models involve 
physiologically plausible parameters that capture a better 
temporal characterization of the BOLD signal. So, in more 
advanced fMRI data analysis, nonlinear models serve an 
important role in understanding the brain functionality. 

Amongst the available nonlinear methods for fMRI 
analysis, particle filters have gained a lot of attention during 
the past few years [5][7][9], due to its excellent performance 
in the highly nonlinear domain [13]. Our work highlights the 
applicability of an alternate to the SIR particle filter used in 
the above approaches. Being an online state/parameter 
estimation algorithm, our approach saves computing time 
compared to the offline maximum likelihood based 
parameter estimation methods proposed in [5].  

Results show accurate joint estimates of states and 
parameters with less computational requirements (only 1000 
particles). Even with a high TR still the proposed method 
performs robustly and the parameters converge relatively 
quickly compared to the typical experimental times of the 
fMRI experiments. With suitable parameterization that does 
not compromise the effectiveness of the model and with the 
knowledge of priors, proposed Bayesian framework is well 
suited for the model based analysis of fMRI data. 
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