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Abstract— Attention-Deficit Hyperactivity Disorder (ADHD)
is the most common mental health problem in childhood
and adolescence. It is commonly diagnosed by means of
subjective methods which tend to overestimate the severity
of the pathology. A number of objective methods also exist,
but they are either expensive or time-consuming. Some recent
proposals based on nonlinear processing of activity registries
have deserved special attention. Since they rely on actigraphy
measurements, they are both inexpensive and non-invasive.
Among these methods, those shown to have higher reliability are
based on single-channel complexity assessment of the activity
patterns. This way, potentially useful information related to
the interaction between the different channels is discarded.
In this paper we propose a new methodology for ADHD
diagnosis based on joint complexity assessment of multichannel
activity registries. Results on real data show that the proposed
method constitute a useful diagnostic aid tool reaching 87.10%
sensitivity and 84.38% specificity. The combination of ADHD
indicators extracted with the proposed method with single-
channel complexity-based indices previously proposed lead to
sensitivity and specifity values above 90%.

Index Terms— ADHD, Actimetry, activity/rest analysis, Cen-
tral Tendency Measure, Multichannel Processing.

I. INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is the
most common neurobehavioral disorder in the school age
population [1]. However, even though the treatment of
ADHD is well-defined for the known types —inattentive,
hyperactive-impulsivity and combined—, a simple standard
diagnostic method does not exist, mainly due to the fact
that its etiology is not completely understood [2]. Cur-
rent diagnostic methods can be broadly classified in two
categories, namely, subjective and objective methods. Both
methods have considerable drawbacks: subjective methods
depend on the observer and need many people involved (par-
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ents/relatives, teacher/fellow worker, etc.) whereas objective
methods are either too expensive or not reliable enough.

Considering objective diagnosis, both activity and sleep
patterns have been studied by means of actimetric anal-
ysis [3], [4]. Actimetry registries constitute a simple and
economic alternative for the objective diagnosis of ADHD.
Most of the actigraphy-based studies reporting differences
between ADHD diagnosed and healthy children are focused
in the observation of specific amplitude patterns in the sleep
registries. In order to extract meaningful information from
these rest epochs, logs of, at least, 7 days duration are
required [5]. Additionally, the fact of considering only rest
(sleep) epochs involves discarding meaningful information
related to normal activity.

In [6], [7] we proposed an inexpensive method to objec-
tively detect the combined type of ADHD in which only
the involvement of the patient is needed and it is as simple
as wearing a small device that does not prevent the patient
from carrying out usual habits during the test. The method is
based on the nonlinear analysis of 24-hour-long actigraphic
registries to characterize both activity and sleep patterns.
These data sets are obtained with actimeters wrapped on
the wrist of the dominant hand of the patient; these de-
vices provide motion signals in each of the three spatial
coordinates (x,y,z). Our method outperformed those so far
proposed also relying on actigraphy registries. The obtained
results were in line with those reported in the literature for
more expensive and less convenient objective methods either
based on polysomnography (PSG) or Magnetic Resonance
Imaging (MRI).

The analysis performed in [6], [7] did not focus on the ex-
traction of information related to the interaction between the
acquired channels. That is, the ADHD-informative indices
were individually extracted from each actigraphic channel
(x,y,z and global motion r =

√
x2 + y2 + z2) and further com-

bined to achieve higher diagnostic capability. In this paper,
we focus on the evaluation of new indices based on the joint
evolution of the acquired vector signal. By simultaneously
processing the multichannel signal, additional information
based on cross-channel interaction can be obtained. By
combining this new information with the one provided by
single-channel-based indices, further improvements in the
diagnostic capability can be achieved.
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II. MATERIALS AND METHODS

A. Subjects and Data

The study is conducted as a case-control analysis, where
the two groups respectively consist of 31 and 32 6-year-old
children. Children included in the case group were diagnosed
as having the combined kind of ADHD according to the
DSM-IV criteria [8] and none of them suffered any type
of sleep disorder. The Helsinki protocol has been followed.
Registries were acquired with the ActiGraph GT3x (Acti-
graph Inc. Pensacola, FL, USA) device wrapped on the sub-
ject’s dominant wrist at fs = 1 sample per second during 24
hours.The activity measurements (x,y,z) from the three chan-
nels were recorded for processing. We will refer to the vector
signal as x[n] = [xx[n],xy[n],xz[n]]T ,n = 0, . . . ,N − 1, with
N, the length of the acquired time series. We additionally
consider the vector time series xsph[n] = [xr[n],xθ [n],xφ [n]]T

obtained by transforming x[n] to spherical coordinates:

 xr[n]
xθ [n]
xφ [n]

=


√

x2
x [n]+ x2

y [n]+ x2
z [n]

arccos
(

xz[n]√
x2

x [n]+x2
y [n]+x2

z [n]

)
arctan

(
xy[n]
xx[n]

)
 . (1)

B. Methods

1) Preprocessing: The preprocessing stage consists of the
two following procedures:

a) Identification of Activity and Rest Intervals: The per-
formed analysis is three-fold, i.e., we have indepen-
dently analyzed the complete signal, as well as both
the activity and the rest intervals. To that end, we
define the rest interval as the interval of time spent in
bed at night time; the remaining time is considered as
the activity time. The identification of both intervals
has been performed automatically with the method
proposed by the authors in [6].

b) Registries Decimation: Decimation of the registries is
a necessary stage for the enhancement of the activity-
related information hidden by the large amount of zero-
valued samples found in the original signal. Authors of
sleep scoring algorithms [9], [10], which dealt with the
same problem, solved it by sample accumulation. We
propose to create a new signal consisting of a sequence
of averaged intervals as follows:

xdec[k] =
1
M

M−1

∑
i=0

x[kM+ i],0≤ k ≤
⌊

N
M

⌋
(2)

with N the overall number of samples. Each sample of
xdec summarizes information of M samples of x[n],
i.e., samples of xdec are epochs of M/ fs seconds.
Parameter M has been chosen from the five options
(15, 30 seconds, 1,5 and 15 minutes). This choice lets
us deal with short epochs (of the order of seconds) that
represent the activity of movements and large epochs
(several minutes) that represent the activity of tasks.

2) Central Tendency Measure for Vector Signals: The
Central Tendency Measure (CTM) is a non-linear magnitude
which quantifies the complexity observed in a second-order
difference plot constructed from a time series. In order to
compute it over vector signals, we first approximate the
tangent vector of the trajectory in the phase space as [11]:

y[k] = xdec[k+1]−xdec[k] (3)

The angle between the tangent vectors can be expressed by
its cosine value, obtained from the inner product definition:

A[k] =
< y[k+1],y[k]>
||y[k+1]|| · ||y[k]||

(4)

where < ·, · > stands for the inner product, and || · || is the
`2 norm of the vector. Compared to the angle itself, the
cosine value presents higher robustness to noise and artifacts.
The second order difference plot express the change rate of
the tangent vectors angle. The diagram is constructed by
employing A[k + 2]−A[k + 1] and A[k + 1]−A[k] as axes.
According to [12], we compute the CTM over the series
of cosine values by selecting a circular region of radius ρ ,
around the origin, counting the number of points that fall
within the region, and dividing by the total number of points:

CT M =
1⌊ N

M

⌋
−4

b N
M c−5

∑
k=0

δk, (5)

where

δk =

1 if

√
(A[k+2]−A[k+1])2+

(A[k+1]−A[k])2 ≤ ρ

0 otherwise

(6)

Higher CTM values are obtained from trajectories with
soft changes (regular movements), while movements with
high directional variability yield lower values of this mag-
nitude. Several values of ρ are considered in our study.
Specifically, we have evaluated 100 different values for ρ

within its dynamic range.

3) Statistical Analysis, Feature Selection and Classifier
Assessment: The statistical analysis consists of a separability
analysis of the two involved groups. This analysis is per-
formed by means of either the Student’s t test (with penalty
when the F test of Snedecor-Fisher gives that variances of
data are not equal) if data are Gaussian, or the U test of
Mann-Whitney otherwise.

For the evaluation of the classifier performance, we
have used ROC (Receiver Operating Characteristic)
curves [13] with the Fisher’s linear discriminant and
the Leave-One-Out strategy to avoid dependence be-
tween the training and the test datasets [14]. Sensi-
tivity, specificity and accuracy —numerically defined as
(sensitivity)(prevalence)+(specificity)(1-prevalence)— have
also been obtained for the optimal decision threshold. The
best classifier has been defined as the one with the highest
area under the [ROC] curve (AUC); if, to our working
precision, equality exists in two AUCs, the best classifier
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Fig. 1. Results of the separability analysis summarized as a sorted p-values plot. (a) x[n], (b) xsph[n].

will be that with higher accuracy. The best features will be
those leading to the best classifiers.

In order to improve the performance of the classifier, we
have combined several features [15]. Having in mind the
“dimensionality curse”, Rauys et al. proposed that the length
of the feature vector should be, at the most, one order of
magnitude less than the number of samples per class [16].
In this work we have 31 cases and 32 controls, therefore the
length L of the feature vectors must comply with L ≤ 3.
Since the brute-force evaluation of every combination of
all the features used does not seem sensible, we have used
the following multi-stage selection strategy instead: for each
interval (24 h registry, activity or rest epochs), we have
selected the most discriminant features corresponding to each
of the five decimation strategies (15, 30 seconds, 1, 5 and 15
minutes). This has been performed both for the CTM values
computed from the acquired x[n] signal and the transformed
xsph[n]. Starting from this initial set containing 2×3×5= 30
features, a sequential forward selection (SFS) process [14]
is carried out to yield 2D and 3D feature vectors as outputs.

III. RESULTS

Results of the separability analysis for all features are
summarized in figure 1. In this figure, the p-values obtained
from hypothesis testing have been arranged in ascending
order. This sorting allows to identify how many of the
extracted features lead to significative differences for each
of the analyzed signal intervals (24 hours, activity and rest).
For instance, if significative differences are considered for
p < 0.05, 300 out of 500 CTM values1 lead to significative
differences when the whole registry of x[n] is analyzed. As
for the case of xsph[n] we find that also 300 CTM values
are significative but with lower p-values (note that the most
significative feature yields p < 10−7 in this case, while for
x[n] we have p< 4 ·10−5). If we consider the isolated activity
and rest intervals, we have that the number of features

1Note that we have evaluated 100 ρ values for each of the five decimation
strategies.

leading to significative results is substantially lower for both
x[n] and xsph[n], also yielding higher p-values.

In table I we summarize the classification performance of
the most informative features extracted from both the original
x[n] and the transformed xsph[n] vector signals. Since a
high number of informative features has been obtained, only
the best performing for each analyzed time interval (24 h,
activity and rest) have been presented. Index values are pre-
sented as Mean±Std (if Gaussianity) or as [Median ; IQR]
(otherwise). p-values have been respectively obtained from
the Student’s t or the Mann-Whitney’s U Tests. The best
performing individual features have been obtained from the
analysis of the whole registry (24 h). When either the 24
h or the activity intervals are analyzed, lower CTM values
in the case group reveal more complex activity patterns
(trajectories) in those children diagnosed with ADHD. As
for the rest interval, the obtained CTM values are lower for
the control group. This result however, should be carefully
interpreted. Note that for the rest intervals, both CTM values
are very close to 1, which reveal very soft trajectories in
both groups. Differences can be explained by considering
transitions from periods with no activity to specific isolated
movements. This transitions can lead to abrupt changes in
the trajectory which directly translate to CTM.

The classification performance of the best 2D and 3D
classifiers constructed after feature selection is also presented
in table I. A substantial improvement in both AUC and
accuracy has been achieved by combining different features.
Combining the best performing individual feature (F4, Acc.=
0.8095, AUC= 0.8614), with F3 leads to values of Acc.=
0.8413 and AUC=0.9027. The addition of F2 leads to the
highest diagnostic capability: Acc.= 0.8571, AUC= 0.9335.
The separate analysis of the activity and rest intervals turns to
be very useful at this point. It is clear that the best individual
features are those obtained from the analysis of the whole
registry. However, the best multidimensional classifiers are
achieved after including features extracted from the iso-
lated activity and rest intervals which individually presented
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TABLE I
SEPARABILITY ANALYSIS AND CLASSIFICATION PERFORMANCE OF THE MOST INFORMATIVE FEATURES EXTRACTED FROM BOTH THE ORIGINAL x[n]

AND THE TRANSFORMED xsph[n] VECTOR SIGNALS CONSIDERING THE SEPARATE ANALYSIS OF THE 24 HOURS, ACTIVITY AND REST INTERVALS.
RESULTS FOR 2D AND 3D CLASSIFIERS ARE ALSO PRESENTED.

Individual features
Signal Interval EL Feat. ρ Case group Control group p-value Sens. Spec. Acc AUC

24 hours 30 s F1 1.0857 0.6201±0.0204 0.6485±0.0238 3.96E-06 0.9032 0.625 0.7619 0.8211
x[n] only activity 1 min F2 1.4571 0.5331±0.0257 0.5597±0.0255 1.14E-04 0.4839 0.9375 0.7143 0.7424

only rest 30 s F3 2.5713 0.9984±0.0016 0.9963±0.0025 2.72E-04 0.9355 0.4375 0.6825 0.7248
24 hours 30 s F4 1.5428 0.5513±0.0211 0.5892±0.0274 6.92E-08 0.7742 0.8438 0.8095 0.8614

xsph[n] only activity 15 s F5 0.3714 0.2418±0.0168 0.2598±0.0231 8.12E-04 0.8387 0.5 0.6667 0.7117
only rest 5 min F6 2.7999 0.9974±0.0079 0.9873±0.0139 8.29E-04 0.871 0.5938 0.7302 0.7308

Multidimensional classifiers
Dimension Feat. Sens. Spec. Acc AUC

2D F4 +F3 0.7742 0.9062 0.8413 0.9027
3D F4 +F3 +F2 0.8710 0.8438 0.8571 0.9335
2D Best combination of single- and multichannel features 0.9032 0.8438 0.8730 0.9219
3D Best combination of single- and multichannel features 0.9355 0.9062 0.9206 0.9516

Keys: EL: Epoch Length; Feat.: Key for feature identification; ρ: value of the parameter for CTM calculation; Sens.: Sensitivity; Spec: Specificity;
Acc.: Accuracy; AUC: Area Under the [ROC] Curve.

poorer performance.

Finally, the last two rows in table I summarize the classifi-
cation performance of the best 2D of 3D classifiers obtained
by combining single- and multichannel complexity-based
features. Feature selection in these cases was performed by
SFS from an initial set composed of the 30 initial features
employed in our study and the initial set used in [7]. A
performance improvement has been achieved if we compare
with the results obtained from our single-channel proposal
in [7] (Acc.=0.9048, AUC=0.9496 in the best case) and the
multichannel analysis here proposed.

IV. CONCLUSIONS

We have introduced a novel method based on multichannel
complexity assessment of 24 h actimetry registries which
constitutes a low-cost objective diagnosis tool for ADHD in
children. Experimental results have shown that the nonlinear
analysis of the directional variability in the activity channels
can provide meaningful indices for ADHD diagnostic and
follow up. By incorporating features accounting for the
directional complexity of separate activity and rest inter-
vals, the diagnostic capability of 24 h-based indices can
be substantially improved. The proposed method not only
constitutes a useful tool for diagnostic aid, but it also paves
the way to complexity-based interpretations of the pathology,
providing additional information to the diagnostic procedure.
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