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Abstract— The current Food and Drug Administration ap-
proved system for the treatment of tremor disorders through
Deep Brain Stimulation (DBS) of the area of the brain that con-
trols movement, operates open-loop. It does not automatically
adapt to the instantaneous patient’s needs or to the progression
of the disease. This paper demonstrates an adaptive closed-
loop controlled DBS that, after switching off stimulation, tracks
few physiological signals to predict the reappearance of tremor
before the patient experiences discomfort, at which point it
instructs the DBS controller to switch on stimulation again.
The core of the proposed approach is a Neural Network (NN)
which effectively extracts tremor predictive information from
non-invasively recorded surface-electromyogram(sEMG) and
accelerometer signals measured at the symptomatic extremities.
A simple feed-forward back-propagation NN architecture is
shown to successfully predict tremor in 31 out of 33 trials in two
Parkinson’s Disease patients with an overall accuracy of 75.8%
and sensitivity of 92.3%. This work therefore shows that closed-
loop DBS control is feasible in the near future and that it can
be achieved without modifications of the electrodes implanted
in the brain, i.e., is backward compatible with approved DBS
systems.

Index Terms— Surface EMG, closed-loop deep brain
stimulation, feed-forward back-propagation neural network,
Levenberg-Marquardt learning algorithm, tremor onset pre-
diction, movement disorders.

I. INTRODUCTION

Parkinson’s Disease (PD) is a progressive chronic neu-

rological disorder of the central nervous system for which

no cure is available at present [1]. Early stage PD’s most

common symptoms are tremor, rigidity, imbalance, and

slowness in movement, which can be treated with drug

therapy. In advanced stage PD, drugs become ineffective

or start producing side-effects. Surgical procedures, such as

Deep Brain Stimulation (DBS), relieve patients from most of

their debilitating motor symptoms. Currently approved DBS

(from Medtronic) uses battery-operated surgically-implanted

electrodes to deliver high frequency electrical stimulation

to the neurons in the brain that control movement. DBS

is particularly effective at suppressing involuntary rhythmic

tremor in the 4− 12 Hz frequency band [2].

Open-loop DBS. Medtronic’s DBS system operates open-

loop 1, that is, the physician sets the DBS stimulation param-

eters, such as frequency, pulse amplitude, and pulse duration,

with visual feedback from the patient. DBS stimulation is
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provided continuously and its parameters remain constant

until the physician changes them. This implies that existing

DBS technology is neither adaptive to the patient’s needs nor

able to follow the patient’s disease progression over time.

Closed-loop DBS. To design a closed-loop DBS system

we need to adaptively control the DBS stimulation param-

eters as well as the time intervals when DBS stimulation

is administered. This requires the identification of suitable

physiological signals that contain information related to

the real-time response of the brain to DBS stimulation. In

particular we are interested in a simple (and therefore robust)

on-off control of DBS such as when stimulation is switched

off and the patient does not experience tremor, the system

tracks few physiological signals and predicts when tremor is

about to reappear. When tremor reoccurrence is predicted,

stimulation is switched on for a fixed amount of time. A

subset of the authors showed in [3] that it is possible to

switch off stimulation for often more than 50% of the time,

which gives a considerable saving in battery life and reduces

the amount of current injected in the brain.

Past Work. The neuronal brain activity measured at the

site of the DBS implant would offer the necessary predictive

information about tremor reappearance. However, measur-

ing from the stimulating electrodes would require changes

in the currently approved DBS system whose testing and

approval could take years and considerably delay closed-

loop DBS commercialization. To overcome this limitation

the authors of [3], [4] proposed a DBS closed-loop design

where the controller inputs are parameters estimated from

non-invasively recorded sEMG signals that correlate with

the tremor symptoms. In [4], a reliable predictor of tremor

onset for Essential Tremor was obtained by using entropy

measures, in particular approximate and wavelet entropy.

Although the predictor in [4] successfully predicts tremor in

all trials, the results were limited to 8 trials for one patient;

moreover, the algorithm had manual training and setting of

several parameter thresholds. Since this is unfeasible when

it comes to massive commercialization of closed-loop DBS,

and since parameter thresholds can change over time, in this

work we propose a novel tremor predictor based on a self

adaptive artificial neural network (NN).

Main Contribution. NN-based predictors, with physio-

logical signals as inputs, have been widely used in clinical

applications such as for predicting, for example, epileptic

seizures [6] and sleep apnea [7]. In this work we propose to

use a feed-forward back-propagation NN to predict tremor

reappearance in PD patients. We show that the proposed NN

successfully predicts tremor in 31 out of 33 trials with an
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overall accuracy of 75.8% and sensitivity of 92.3%. This

shows the possibility of NN-based closed-loop DBS system

design without making any modification to the existing

electrodes implanted in the brain.

Paper Organization. The paper is organized as follows.

Section II describes the recording procedure of the physio-

logical signals, the methodology used for parameter extrac-

tion and the chosen NN architecture. Section III presents the

results of testing the proposed NN-based tremor predictor on

actual PD data. Conclusions and directions for future work

are highlighted in Section IV.

II. METHODOLOGY

A. Data Set

Two PD patients were recruited for the study. Informed

consent approved by the IRB was obtained from both pa-

tients. Both patients had bilateral DBS electrodes implanted

in the subthalamic nuclei. Both patients had dominant tremor

in one or both arms and their symptoms were well controlled

by the combination of DBS stimulation and medications.

Both patients had one recording session each in the Neural

Control of Movement Laboratory (NCML) at UIC. On the

testing day, the patients were on their usual medication and a

series of sEMG recordings were done from the the extensor

digitorum communis (upper forearm). The recording setup

was as in [8]. The sEMG signal was amplified (gain set

to 1,000) and bandpass filtered between 20Hz and 450Hz

(Delsys Inc., Boston, MA). Along with sEMG, acceleration

data was recorded from the finger tip (with a calibrated

Coulbourn type V 94-41 miniature solid-state piezoresistive

accelerometer with resolution was 0.01g). Both sEMG and

accelerometer data were sampled at fs =1000Hz.

In the beginning of the experiment, the patient was com-

fortably seated in an upright position. The arm of the chair

served as the supportive surface for the patient’s forearm.

DBS stimulation was switched off for some time before

recording started. Then a trial started with the stimulation

on for 20s to 50s followed immediately by an interval with

stimulation off. The total duration of each trial, T , was

between 50s to 100s. In each trial, the patient was in one

of the following three states: R) at Rest with his/her hand

completely relaxed and hanging from the chair’s arm rest; P)

holding a Posture, with his/her testing wrist and hand in a

neutral extended position; and A) performing a voluntary

Action such as reaching for his/her opposite shoulder or

flexion of the wrist. In states P and A, the movement/posture

was initiated either before or after switching the stimulation

off. There were 15 to 20 such trials recorded for each

patient. After stimulation was switched off at time toff , the

first instant ttr when tremor visibly reappeared was noted.

Reappearance of tremor was also verified by thresholding

the acceleration data at 0.2mm/s2 for states R and P.

B. Parameter Extraction

The parameters extracted from the sEMG and acceleration

signals and used as inputs to the NN are:

Spectral Measures. We use two spectral measures cal-

culated for the acceleration and sEMG signals. The sEMG

is first smoothed by calculating its power over windows of

50ms (=50 samples) duration that slid over every sample.

1) Let Xn(t) be the smoothed sEMG signal in the n-th

frequency band, n ∈ {1, ..., N} at time t, t ∈ {1, ..., L},

obtained by a Daubechies4 wavelet decomposition. Here

N = 10, L = Tfs where fs=1KHz and T are the sampling

rate and the total duration of the signal, respectively. The

mean power in the n-th frequency band, defined as

Pn :=
1

L

L
∑

t=1

|Xn(t)|
2, (1)

captures the average signal content in the n-th frequency

band over an interval of duration T .

2) Let Pi be the power of the smoothed sEMG signal or of

the acceleration signal in the frequency band centered around

fi, i ∈ {1, ...,M}, M = 512, obtained by using a Fourier

transform. Then we define:

Pmax =
maxj∈{4,...,19} Pj
∑

j∈{20,...,41} Pj

; fmax = arg max
j∈{4,...,19}

Pj . (2)

where f4 = 3Hz, f19 = 18Hz, f41 = 40Hz. The meaning

of these quantities is as follows. The smoothed sEMG signal

has most of its power concentrated in the 0-40Hz range. We

omit the 0-3Hz band to account for the DC value and very

low frequency movement artifacts. fmax is the frequency in

the 3-18 Hz range (typical tremor frequency range) with

the largest power, while Pmax is the power at fmax. Note

that Pmax is normalized by the power in the 18-40Hz band

(outside the typical tremor frequency range) because the

power at fmax can be compared over different trials which

might have significantly different power outside the range of

interest.

Entropy Measure. The Sample Entropy allows investi-

gation of the dynamics of a time series [9]. For a given

time series U (here the smoothed sEMG signal) of length L,

the sample entropy, denoted as SpEn(U,m, r), involves two

input parameters m and r, which are the pattern length and

the similarity criterion, respectively, and is defined as

SpEn(U,m, r) := lim
L→∞

− log
Bm+1(r)

Bm(r)
, (3)

where Bm+1(r)/Bm(r) has the meaning of the condi-

tional probability that two sub-sequences of U that are

similar for m points remain similar within a tolerance r at

the next point; a lower SpEn(U,m, r) value reflects a high

degree of regularity [9]. Here, m = 2, r = 0.14σ, where σ
is the standard deviation of the sEMG signal.

C. Neural Network (NN)

A NN consists of many neurons/nodes arranged in dif-

ferent layers, referred to as input, hidden and output layers.

A NN is a connectionist architecture based on functional

and/or structural aspects of the human brain. It consists

of a massive set of interconnected neurons in the form of

weights, working in unison to solve a specific problem. A

NN is an adaptive network that changes its organization

based on the information it receives that is defined by:

(i) the interconnection between different neurons (weights),

(ii) the learning process for updating the weights of the
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interconnection between the neurons and the bias at each

neuron and (iii) the activation function that converts a neuron

weighted input to its output activation, which we introduce

next.

To predict the onset of the tremor for the problem at hand,

we propose to use a feed-forward back-propagation NN [10].

Attributes of the NN. Our NN architecture consists of

an input layer with six neurons, two to three hidden layers

each with 20 neurons and an output layer with two neurons.

Each layer has its own weight matrix, bias vector, input

vector and output vector, whose dimensions are given by

the number of neurons/nodes in the layer. For the j-th node

in a layer, let wj = [wj,1, ..., wj,n] be its weight vector,

xj = [x1, ..., xn] be its input vector, bj be its bias and

oj be its output (here n indicates the number of neurons

in the preceding layer). The initialization of the weight/bias

is performed by Nguyen-Widrow Randomization technique

[11]. This algorithm chooses the initial values of weights and

biases in order to distribute the active region of each neuron

approximately evenly across the layer’s input space.

The net input at j-th node is defined by oj :=
∑n

ℓ=1 wj,ℓxℓ+bj . The net output at j-th neuron is a function

f(oj) of the net signal oj , where f is the activation function.

For nodes in the input layer we choose the activation function

f(oj) = tanh(oj), while for nodes in the hidden or output

layer f(oj) = oj . The net output values of the nodes in one

layer became the input values of the nodes in the next layer

(here for notation convenience we omitted the layer index).

Weights and bias are chosen so as to minimize the mean

square error (MSE). The net error over all P input-output

pairs at the N -node output layer is

Enet(w,b) :=

P
∑

p=1

1

N

N
∑

k=1

e2p,k, (4)

where ep,k := dp,k − yp,k is the training error at k-th output

layer for the p-th input-output pair (defined as the difference

between the desired/ground truth output dp,k and the NN

predicted output yp,k = f(op,k), and where w is the vector

with all the weights and b the vector with all the biases. Here

N = 20, and P = 7 and 8 for PD1 and PD2, respectively.

In our NN design we use the derivative-based Levenberg-

Marquardt (LM) algorithm for the learning phase to optimize

(w,b). In the LM learning algorithm the weight and bias

update is based on the second-order derivative of the total

error function in (4) [12], [13]. It is formulated in term of

the Hessian matrix H of (4) with respect to (w,b) which is

approximated in term of Jacobian matrix J as H ≈ J
T
J+µI,

with I is the identity matrix. Finally, the weights or bias at

iteration k, indicated here as zk, is updated as

zk+1 = zk −
(

Jk
T
Jk + µI

)−1

Jkek (5)

where µ is the non-negative combination coefficient (µ → 0:

Gauss-Newton algorithm; µ → ∞: steepest decent algo-

rithm) and e is the error vector that contains all the ep,k
in the definition error in (4).

Training of the NN. The NN is trained with the following

parameters extracted from a subset of the recorded sEMG

and accelerometer signals: Mean power in the frequency

band 8-16Hz of the sEMG signal defined in (1); Frequency

at maximum power of the sEMG and of the accelerometer

signal defined in (2); Peak frequency of the sEMG and of

the accelerometer signal defined in (2); and Sample entropy

of the sEMG signal defined in (3).

The time series of all extracted parameters from the sEMG

and accelerometer signals are divided into two regions:

tremor region and no-tremor region, visually separated by

the bold vertical line in Fig. 1. In order to define an input-

output vector pair, a particular time step (shown in Fig. 1

by thin vertical line) is chosen from the given time series.

The time series points (indicated by the arrows in Fig. 1) on

the thin vertical line forms the input vector which consists

of six elements corresponding to each extracted parameter

at the particular time step. If the time step lies in no tremor

region the output vector/ground truth is [0,1] otherwise it is

[1,0]. For example, in Fig. 1 the chosen time step lies in the

no-tremor region and therefore the output vector is [0,1].

Training of the NN is performed by using 7/16 and 8/17

sEMG/acc data sets for PD1 and 2 respectively. The NN

is first trained with the original data set in order to adjust

the (w,b) parameters that were initialized with the Nguyen-

Widrow Randomization technique. The second phase of

training is performed by using the same training set, but this

time the different trials are uniformly permuted at random.

This second phase serves to further tune the weights and

biases. Finally, the so trained NN is fed with the parameters

extracted from the sEMG and accelerometer signals as inputs

and is used to predict the onset of tremor after the stimulation

turned off in those trials not used for training.

III. RESULTS

Classification of Prediction Outcomes. To analyze the

prediction performance, each considered trial is classified

based on the prediction outcome as follows: let T be the total

duration of a trial, ton and toff be the times when stimulation

was switched on and off, respectively, and ttr and tpr be

the times when tremor was detected and predicted using the

NN, during the stimulation off period, respectively. Trials

where tremor was detected over the recorded interval after

stimulation was off, i.e ttr < T , are denoted as TD (Tremor

Detected), while those where tremor was not detected, i.e

ttr > T , are denoted as NTD (No-Tremor Detected). In

particular we classify as follows. For TD:

• If [(ttr > tpr) and (ttr − tpr) < max(5s, 0.5(tpr − toff))]
or [(ttr < tpr) and (tpr − ttr) < 1s], then the algorithm

successfully predicts tremor and this outcome is classified as

a true positive (TP). This is a bit different from the classical

TP definition, in that we require that the prediction be at most

50% of the tremor free off period or 5s (whichever is greater)

before actual tremor reappears. This allows penalizing too

early prediction outcomes.

• If (ttr > tpr) and (ttr − tpr) > max(5s, 0.5(tpr − toff)],
then the prediction is too early and the outcome is classified

as false positive (FP).

• If (ttr < tpr) and (tpr − ttr) > 1s, then the prediction is

too late and the outcome is classified as false negative (FN).

For NTD:
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Fig. 1: Input and Output Vectors in Training Data Set. The bold vertical line divides the time series into tremor and no-tremor

regions. A time step (shown via a thin vertical line) consists of six input vector elements which are indicated by the arrows.

The ground truth output vector is either [0 1] in a no-tremor region or [1 0 ] in a tremor region.

• If the algorithm does not predict any tremor over the entire

interval T − toff , then its classified as true negative (TN).

• If the algorithm predicts tremor over the entire interval

T − toff , then its classified as false positive (FP).
Performance Evaluation. For the algorithm to perform

well, the total number of TP and TN must be maxi-

mized while minimizing FP and eliminating FN. This would

achieve the maximum “tremor-free” interval when the stim-

ulation is off. In order to quantify this, the following perfor-

mance metrics are defined

accuracy =
#TP +#TN

#TP +#FP +#TN +#FN
(6)

sensitivity =
#TP

#TP +#FN
. (7)

For the purpose of this application, sensitivity should be

very high (over 90%) because we want to avoid missing any

tremor event. At the same time, we also want to have high

accuracy, which indicates the ratio of successfully predicted

trials to the total number of trials, not only ensures that there

is no miss in detecting a tremor event but also the prediction

is not too early.

Additionally, the following ratio is defined as Rpd :=
∑

(tpr − toff)/
∑

(ttr − toff), where both the summations are

over all the trials and Rpd is calculated for all trials with

a TP/TN/FP, where for the NTD trials we use ttr = T −
toff , tpr = min(T, tpr)−toff . Since Rpd is the ratio between

the predicted delay to the actual delay in tremor, it provides

a measure of how good the prediction is, i.e., a higher value

indicates that the predicted delay is closer to the actual

delay which is desirable. Table I shows some typical trials to

illustrate the outcome classification. In Table II the accuracy,

sensitivity and Rpd for each PD patient is shown. The

overall value is calculated by considering all trials from both

patients. Thus the NN predictor achieves a high sensitivity

which is highly desirable since we do not want to miss any

tremor event. It also achieves an accuracy of at least 75%

and an Rpd > 64, which means that the predictor loses less

than 36% of the actual delay period due to early prediction.

IV. CONCLUSIONS

In this paper, we showed that a NN can serve as a

simple yet accurate model for the prediction of tremor

TABLE I: Some typical trials and their classification for PD1

and PD2. Legend: R(rest), P(posture), A(action) while 1 and

2 refers to PD1 and PD2, respectively.
Trial# toff − ton ttr − toff tpr − toff tpr − ttr N o/p type

R1 31 21 21.75 -0.75 80 TP

P1 41 18 7.25 10.75 70 FP

A1 31 11.5 8.5 3 70 TP

R2 47 16 15 1 80 TP

P2 52.75 5.25 3.75 1.5 80 TP

A2 52.5 11.5 3.25 8.25 70 FP

TABLE II: Prediction performance with ratios in %.
Patient# N TP,TN,FP,FN accuracy sensitivity Rpd

PD1 16 12,0,3,1 75 92.3 64.9

PD2 17 13,0,3,1 76.5 92.9 69.7

overall 33 25,0,6,0 75.8 92.5 67.3

in Parkinson’s patients. We tested the feed-forward back-

propagation NN model with inputs from non-invasively

measured sEMG/accelerometer signals. The accuracy of the

tremor prediction after the stimulation turned off is about

75.8% with 92.3% sensitivity. For future work we will

investigate whether the performance can be improved by

other more advanced neural network models such as the

LAMSTAR network.
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