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Abstract— The aim of this study was to examine the effects
of uncertainty of the conductivity values on the resulting field
distribution in a heterogeneous finite element model of deep
brain stimulation (DBS). A non-intrusive projection method was
used by expanding the input random variables and the resulting
potential on a multidimensional basis called the Polynomial
Chaos (PC). The finite element model incorporates an accurate
model of a DBS electrode used in clinical treatment extended by
an encapsulation layer around the electrode body. Areas of grey
matter, white matter and cerebrospinal fluid were derived from
averaged magnetic resonance imaging (MRI). The uncertainties
of the conductivity values of these tissue types were modelled as
uniform random variables using data from literature to obtain
their upper and lower boundaries.

I. INTRODUCTION

Deep brain stimulation (DBS) is a neurosurgical method to

treat symptoms of motor skill disorders such as Parkinson’s

disease (PD), essential tremor and dystonia by implanting a

stimulation electrode in a group of nuclei situated at the base

of the forebrain, the basal ganglia [1]. Although the method

has become a common procedure in these clinical fields

[2], the fundamental mechanisms of DBS remain uncertain

[3]. Starting in the last decade many models for predicting

the effects of DBS were developed and more insights into

the spatial extent of activation [4], the required model com-

plexity [5] and electrode geometry were gained [6]. These

models and their contribution to the understanding of the

mechanisms of DBS help to develop clinical software, which

could support the planning and performance of the complex

stereotactic surgery as well as the prediction of longterm

effects of DBS. The practical usage of such software depends

on the complexity and uncertainty of the input parameters

which directly influences the field distribution in the prox-

imity of the electrode and therefore the resulting neuronal

response, i.e. the activated brain regions. The uncertainty of

the electrical properties of brain tissue is dependent on the

experimental measurement of these properties and can vary

up to a factor of 3 in literature [7].

To evaluate the influence of uncertainties in the input

data of a model, popular methods based on a nonsampling
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approach, including perturbation methods, and those based

on a sampling approach, such as Monte Carlo sampling

(MCS), are commonly used. However, perturbation methods

are only applicable if the magnitude of the uncertainties

in the inputs and outputs are below 10% [8]. MCS is not

restricted to this limitation, but typically a large number of

deterministic computations of the model is needed, since the

asymptotical convergence of the statistics is 1/
√
N , where N

is the number of deterministic computations. This need for

large number of executions makes MCS not applicable for

3D finite element models of DBS with up to several millions

of unknowns. In contrast, the method of the polynomial

chaos (PC) expresses the stochastic solutions as orthogonal

polynomials of the random inputs and exploits their orthog-

onal nature to achieve a better convergence [8]. The method

can be implemented using either an intrusive approach,

in which the stochastic expansion is incorporated into the

deterministic formulation, or a non-intrusive approach, in

which the original determinstic formluation is maintained

and used to compute the coefficients of the output expansion

for given expansions of the input variables.

In this study a non-intrusive projection approach is used

by expanding the random input and output on a multidimen-

sional basis, the polynomial chaos (PC). The coefficients of

the output expansion are computed by numerical evaluation

of a multidimensional integral by using Gauss quadrature. In

this case, the number of deterministic computations depends

only on the tensor product of the used Gauss points d
resulting in dM evaluations of the finite element, where M
is the number on independent random input variables.

II. METHODS

A. Polynomial chaos

The random inputs and the stochastic solutions are ex-

pressed on a truncated orthogonal basis formed by multi-

dimensional Hermite polynomials ψ(ξ) with the Gaussian

random vector ξ = (ξ1, . . . , ξM ) and its probality density

function fξ called the polynomial chaos (PC) [9]. The

random conductivity σ(j) of a certain tissue type j can then

be approximated by a truncated series of multidimensional

Hermite polynomials, where Pin is the order of the multidi-

mensional input expansion:

σ(j) ≈
Pin∑

i=0

σ
(j)
i ψi(ξ) , j = 1, . . . ,M . (1)
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Fig. 1. Coronary slice of the model geometry consisting of a homogeneous
idealized brain and a heterogeneous region of interest. The electrode tip
surrounded by an encapsulation layer is located at the stimulation centre. T1
MRI data of the SRI24 multi-channel brain atlas is shown in the background.
The STN is illustrated in the region of interest according to the registration
with the brain atlas [10]. The four electrode contacts and the driven electrode
contact 2 are highlighted in gray and dark gray, respectively.

Likewise, the random output, e.g. the electrical potential at a

certain node φ(x), can be expanded on the same basis, where

Pout is the order of the multidimensional output expansion:

φ(x) ≈
Pout∑

k=0

φk(x)ψk(ξ) . (2)

By computing the expectation E[φ(x)ψk(ξ)] and exploiting

the orthogonal nature of the PC, the output coefficients φk(x)
can be determined by the following equation:

φk(x) =
E[φ(x)ψk(ξ)]

E[ψk(ξ)2]
. (3)

The denominator can be evaluated analytically while the

nominator needs further consideration. In the monodimen-

sional case, Gauss-Hermite quadrature with d Gauss points

t = (t1, . . . , td) and Gauss weights w = (w1, . . . , wd) is

used to evaluate numerically the integral by computing the

deterministic solutions φ(x, σ(t)). In the multidimensional

case with M random inputs, the tensor product of the d
Gauss points in M dimensions has to be computed, resulting

in a sequence of dM vectors t(l) = (t
(l)
1 , . . . , t

(l)
M ) of Gauss

points and weights w(l) = w
(l)
1 . . . w

(l)
M . The multidimen-

sional integral can then be evaluated numerically by the

following equation:

E[φ(x)ψk(ξ)] ≈
dM∑

l=1

w(l)φ(x, σ(t(l)))ψk(t
(l)) . (4)

To assess the convergence, the method was repeated for dif-

ferent numbers of Gauss points d while the monodimensional

expansion orders were set to pin = 19 and pout = 9. The

computation of the random input and output expansions were

carried out using MATLAB (R2011b, Mathworks).

B. Model geometry

The human brain was modelled by an ellipsoid with the

semi axis 64mm transversal, 81mm longitudinal and 55mm
sagittal derived from the SRI24 multi-channel brain atlas
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Fig. 2. Model of a 3-compartment resistor used for validation. The
conductivities σ1(ω) ∈ U(2, 4) Sm−1 and σ2(ω) ∈ U(5, 9) Sm−1 are
independent, uniformly distributed random variables, while σ3 = 10Sm−1

is deterministic. The random potential φ(ω) is evaluated at the centre of
the model indicated by the cross.

TABLE I

LOWER AND UPPER BOUNDARIES OF THE UNIFORMLY DISTRIBUTED

RANDOM TISSUE CONDUCTIVITIES. ∗ [7], † [14].

Brain tissue Min
[
Sm−1

]
Max

[
Sm−1

]

White matter 0.06∗ 0.14†

Grey matter 0.09∗ 0.33†

Cerebrospinal fluid 1.54† 2.00∗

which comprises 3 T MRI images and tissue segmentations

with a resolution of 1mm3 of 24 volunteers spanning from

19 to 84 years old [11]. The stimulation centre is located

within the STN, the position of which was determined using

a brain atlas and comparing axial, coronal and sagittal slices

of the T1-weighted MRI data with the location of the STN in

the atlas images [10]. A model of the cylindrical stimulating

electrode (Medtronic Mo. 3387, Medtronic Inc.) surrounded

by an encapsulation layer with a thickness of 0.2mm was

incorporated into the model. The spherical angles of the

electrode lead, derived from postsurgical CT scans, were

set to an azimuthal angle of 7 ◦ and polar angle of 20 ◦. A

heterogeneous region of interest (ROI) with an edge length

of 19mm was implemented around the electrode tip using

the segmented MRI data [11]. The ground was set to a plane

circle with a radius of 22mm at the bottom of the model.

C. Conductivity

The conductivity of grey matter, white matter and cere-

brospinal fluid are subject to uncertainty and differ in the

literature [7], [12], [13]. Since the random distribution of

these conductivities is not known, they are assumed here

to be uniformly distributed to maximize their variance. The

values for the uniform random variables were taken from

[7] at 130Hz, which is a fundamental stimulation frequency

in DBS, and [14] (see table I). The conductivity of the

encapsulation layer was set to 0.135 Sm−1 to match long

term conditions of deep brain stimulation [15].

D. Finite element computation

A quasi-static approximation of the time-harmonic

Maxwell’s equations was used to compute the field distri-

bution inside the brain model [16]. Since the field distri-

bution within the ROI is of particular interest, the spatial

representation of the electrode body was subtracted from the

model. Boundary conditions representing perfect conductors

and insulators were applied to the active electrode contact

(1V) as well as ground (0V) and the electrode body as

well as the exterior boundary of the model, respectively. The

inactive electrode contacts were set to a floating potential,
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Fig. 3. Probability densities of the evaluated potential φ in the validation
model. MCS with 7500 samples and the non-intrusive projection methods
for 6, 8 and 10 Gauss points are shown.

i.e. no net current flow crosses their surface. The finite

element software COMSOL Multiphysics (ver 4.2, Comsol

AG) was used to perform the deterministic computations.

Iteration was stopped when the 2-norm of the residual was

below 1 · 10−6. The mesh at the electrode contact surfaces

was manually refined until the alteration of the integral of

the current density over the surface area was below 1%
resulting in a maximum element length of 0.2mm. The

maximum element length within the ROI was set to 0.5mm
to avoid disconformities by mapping the tissue information

of the hexahedral MRI mesh on the tetrahedral finite element

mesh. The resulting model consisted out of 1.4 million mesh

elements.

III. VALIDATION

Validation of the non-intrusive projection method was

performed in a 2D quasi-static model of a 3-compartment re-

sistor with voltages of 1V and 0V applied to its left and right

boundaries. The conductivities of the regions were modelled

using two independent, uniformly distributed random vari-

ables, σ1(ω) ∈ U(2, 4) Sm−1 and σ2(ω) ∈ U(5, 9) Sm−1,

and one deterministic conductivity value σ3 = 10Sm−1

(see Fig. 2). The mesh consisted out of 228 triangular

elements resulting in 517 degrees of freedom. The input

and output expansions were truncated at pin = 19 and

pout = 9, respectively. MCS for 7500 samples, resulting in

the same amount of deterministic finite element executions,

were carried out for the same model.

A good agreement of the results of the non-intrusive

projection method with MCS could be obtained by using

10 Gauss points for which only 100 deterministic executions

were necessary (see Fig. 3). The deviation of the variance of

the probability density for 10 Gauss points with respect to

MCS was below 5 · 10−8.

IV. RESULTS

To compute the output probability density of the potential

distribution around the electrode tip, multiple executions of

the non-intrusive projection algorithm for different numbers
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Fig. 4. Probability densities of the potential φ 1 mm from the active
electrode contact for 10, 000 multivariate Gaussian samples. Computations
were carried out for different numbers of Gauss points.

of Gauss points were conducted. Using 10 Gauss points

showed a good convergence of the output probability density,

which approximately resembles a uniform distribution with

the boundaries φ ≈ U(0.825, 0.905)V (see Fig. 4). Dividing

the range of the boundaries by the mean of the potential

φ̄ = 0.865V results in an 9.3% uncertainty of the output

potential in the proximity of the active electrode contact.

To investigate the influence of the input uncertainties in the

region of interest, the ouput probability density in a coronary

intersection of the ROI was computed for each node on

a grid with a spacing of 0.5mm resulting in 1512 node

points. While the mean potential in each node could be

directly taken from its random expansion coefficients, the

standard deviation for every node was computed using 100
multivariate Gaussian samples. Fig. 5 shows the potential

isolines for 0.15V and 0.25V of the mean potential as well

as its standard deviation. The uncertainty of the potential

increases in regions which are further away from the active

electrode contact, where as the potential diminuishes with

increasing distance from the active electrode.

V. DISCUSSION

The uncertainty of the potential in the proximity of the

active electrode contact was determined to be approximately

9.3%. This uncertainty is substantially smaller than the input

uncertainties, namely 114%, 80% and 26% for grey matter,

white matter and cerebrospinal fluid, respectively. This dif-

ference in the input and output uncertainties results from the

smoothing of the potential by the Laplace equation used to

compute the quasistatic solution. The potential distribution

in this model is restricted to values in a limit of 0V to

1V predefined by the Dirichlet boundary conditions used to

impose the potentials at the active electrode contact as well

as the ground.

Besides the input uncertainties, the field distribution

of DBS is influenced by other factors such as the fre-

quency dependence and anisotropy of the electrical prop-

erties of the brain tissue. Deviation between frequency-fixed
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Fig. 5. Coronary slice of the mean and standard deviation of the
potential distribution in the ROI. Mean potential isolines and their standard
deviation are shown for 0.25V and 0.15V. T1-weighted MRI data used
to incorporate heterogeneous tissue properties in the ROI is shown in the
background.

and frequency dependent quasi-static solutions for voltage-

controlled stimulations were reported to be approximately

21% [17] and 4% between anistropic and isotropic brain

models considering the neuronal activation in the STN [18].

In addition, tissue anisotropy was reported to influence the

extent and shape of the potential distribution of DBS [4].

The resulting output uncertainty is strongly dependent on the

uncertainties in the input data. The results of this study would

therefore suggest to consider input uncertainties in models

of DBS if their magnitudes are similar to those considered

here.

In this study, the non-intrusive projection method was

applied to the field of DBS by investigating the influence

of input uncertainties of the brain tissue conductivity. Fur-

ther insight could be gained by supplementary investigating

uncertainties of the relative permittivity of brain tissue.

However, this would require modelling of 6 random inputs

resulting in exponentially increasing deterministic executions

according to the curse of dimensionality. A solution to this

limitation would be the use of sparse grids instead of tensor

grids [9]. In addition, other sets of orthogonal polynomials

such as Legendre and Laguerre polynomials could improve

the convergence of the method for certain random distribu-

tions [8]. In these cases, smaller orders of expansion for the

input and output could be sufficient. The presented results

are not only restricted to the electric potential, but could

also be used to examine the influence of uncertainties on the

neuronal response in the target area.

VI. CONCLUSION

A non-intrusive projection method was used to examine

the influence of uncertainties in the tissue conductivities on

the field distribution for voltage-controlled stimulation in

a heterogeneous model of DBS. Input uncertainties were

shown to substantially influence the output potential, which

suggests the importance to consider them in models of DBS.
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