
  

 

Abstract—Studies have demonstrated that reorganization of 

the cortex after stroke contributed to the recovery of motor 

function. However, these studies paid much more attention to the 

reorganization of motor-related brain regions and motor 

executive network which only contained tens of brain regions, 

ignoring the change in brain-wide network during the 

restoration of motor function. Based on this consideration, this 

paper investigated the functional reorganization of brain-wide 

network during the recovery after stroke from the perspective of 

graph theory. At four time points (less than 10 days, around 2 

weeks, 1 month and 3 months) after stroke onset, we obtained 

the functional MRI (fMRI) data of stroke patients when they 

were doing finger tapping task. Based on the fMRI data, we 

constructed the brain-wide functional network which consisted 

of 264 putative functional areas for each subject at each time 

point. Then the topological parameters (e.g., characteristic path 

length and cluster coefficient) of these brain networks were 

examined. Results showed that the brain networks shifted 

towards a non-optimal topological configuration with low 

small-worldness during the process of recovery. And this finding 

may broaden our knowledge about the reorganization of brain 

function during recovery after stroke. 

I. INTRODUCTION 

The recovery of the motor deficit due to stroke usually 

starts from the first several weeks post onset up to years [1]. 

The underlying mechanisms of this recovery have been 

investigated extensively, and results shows that the recovery 

involves the cortical reorganization in different scales [2-5]. 

According to functional neuroimaging studies, the cortical 

reorganization commonly manifests increased recruitment of 

contralesional motor areas [6, 7] and the activation of 

secondary motor area [8, 9]. Moreover, from the perspective 
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of functional and effective connectivity[10], the 

reorganization manifests the change of the pattern of the 

relation between two or in multiple brain regions. For 

examples, the inter-hemispheric functional connectivity 

between motor areas is correlated with the motor functions 

restoration during the recovery after stroke onset [11, 12], and 

the decreased bidirectional coupling between ipsilesional 

supplementary motor area and primary motor area has been 

found in the process of reorganization [13].  

Despite the findings and advances in above studies, little is 

known about the dynamic change of brain networks linking to 

the integrative ability of the whole brain during reorganization. 

Wang et al. [14] have examined the changes of the motor 

executive network in the topological configuration during the 

recovery of stroke with graph theoretical analysis, which had 

been introduced as a novel approach to study functional 

networks in central nervous system [15]. The key finding of 

this study was that the motor executive network showed low 

efficiency of local information processing [16], suggesting 

that the motor executive network shifted towards a 

non-optimal network configuration with less functional 

segregation. Nevertheless, the reorganization of motor 

executive network with 21 motor-related brain regions is 

insufficient to reveal the change of the whole brain topological 

configuration during the recovery. With this consideration, we 

constructed brain-wide functional networks with 264 putative 

functional areas[17] based on the fMRI data of stroke patients 

when they were doing finger tapping task at four time points 

(i.e., within 10 days, around 2 weeks, 1 month, and 3 months) 

after stroke onset. Then the topological parameters (e.g.,   

characteristic path length and cluster coefficient) of 

brain-wide functional networks were calculated using graph 

theoretical approaches, and statistical analysis was further 

performed to these parameters with linear mixed model. 

Based on these topological parameters at different time points, 

we can evaluate the change of efficiency of the global neural 

network, and thus offer new insights into the underlying 

mechanisms of motor function recovery after stroke. 

 

II. MATERIALS AND METHODS 

A. Subjects 

Twelve stroke patients (male/female: 9/3; mean age: 61.5 

years; age range: 47-77) were recruited for this study from the 
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Rui Jin Hospital of Shanghai. All patients were with 

first-onset stroke and motor deficits according to Fugl-Meyer 

index (0-100, motor function is positive correlated to index). 

The average of Fugl-Meyer index of patients in the four time 

points, i.e., within 10 days, around 2 weeks, 1 month and 3 

months after stroke onset, was 71.9, 72.8, 77.1, and 81.4, 

respectively. None of them had a history of neurological or 

psychiatric disorders. The patients were scanned by fMRI at 

four time points. From the second time point, some subjects 

dropped out in the follow-up scanning. The clinical data of 

patients are summarized in TABLE I. The Ethics Committee 

of Rui Jin Hospital approved this experiment and each 

participant gave informed consent.  

TABLE I.  PATIENT INFORMAITON AND THE MOTOR FUNCTIONAL 

SCORING AT FOUR TIME POINTS. 

Subject No. Gender 
Fugl-Meyer Index(fMRI scanning) 

<10 d 2 w 1 m 3 m 

1 M 93 (√) 92 (√) 99 (√) 99 (√) 

2 M 53 (√) 55 (√) 61 (√) 66 (√) 

3 M 51 (√) 50 53(√) 57(√) 

4 F 54 (√) 54 (√) 54 59 

5 M 85 (√) 87 (√) 96 97 

6 F 73 (√) 77 (√) 79 96 

7 F 72 (√) 78 (√) 77 (√) 86 (√) 

8 M 71 (√) 75 (√) 75 75 

9 M 59 (√) 55 62 63 

10 M 94 (√) 94 (√) 99 (√) 99 (√) 

11 M 63 (√) 62 (√) 71 (√) 81 (√) 

12 M 95 (√) 95 (√) 99 (√) 99 

M=Male; F=Female; d=day; w=week; m=month; (√) indicates the subject had fMRI data in this 

time point 

 

B. Task Design 

The fMRI experiment was a block design consisting of rest 

status alternated with stimulation status for three repetitions 

(Fig. 1). At rest status, subjects were instructed to remain 

motionless, relaxing and awake; and when the stimulus was 

presented, subjects should do the finger-tapping task 

(touching thumb to each fingers as fast as possible). Both rest 

and stimulation status lasted for 30s. 

 
 

Figure 1. The block design of fMRI experiment. Rest status (R) alternated 

with stimulation status (S) for three repetitions. 

C. Data Acquisition 

All images were acquired on a 1.5 Tesla MRI scanner 

(Exicte HD, General Electric Medical System, Milwaukee, 

WI, USA). The head of each participant was snugly fixed by 

foam pad to reduce head movements and scanner noise. All 

fMRI data of the whole brain were acquired from the top of 

the brain to the lower part of the medulla oblongata, using an 

echo-planar imaging sequence: 32 axial slices, thickness/gap 

= 5/0 mm, matrix=64×64, repetition time=3000 ms, echo 

time=60 ms, flip angle=90º, field of view=240 mm×180 mm. 

The total scanning time is 3 min and 12 s in each experiment. 

D. Preprocessing of fMRI Data 

For each subject, the data of the first 12 s (4 volumes) were 

abandoned due to the magnetization equilibrium effects and 

the adaptation of the subjects to the circumstances. The rest 

fMRI data were preprocessed by SPM8 

(http://www.fil.ion.ucl.ac.uk/spm) on MATLAB prior to the 

network analysis. The preprocessing included realignment, 

coregistration, normalization, and smoothing. 

E. Construction of Brain-wide Functional Networks 

First, we obtained the coordinates of putative functional 

264 regions of interest (ROIs) based on the brain atlas 

proposed in Power’s research by meta-analysis of ROIs and 

mapping of functional connectivity between ROIs[17]. The 

representative time series of each ROI was extracted by 

averaging the time series of voxels in the 10 mm diameter 

sphere around the predefined coordinates. Then, for each scan 

of each subject, Pearson’s correlation coefficients of all pairs 

of the representative time series for 264 ROIs were calculated 

to obtain one symmetric correlation matrix. Finally, we 

converted each correlation matrix into an adjacency matrix, 

which represented a brain-wide functional network, by 

thresholding. Only those pairs of ROIs with correlation 

coefficients greater than the preset threshold were connected 

with edges. The corresponding elements of the adjacency 

matrix were set to “1” to represent the connection, while the 

corresponding elements of weight matrix were set to the 

absolute values of the correlation coefficients to denote the 

connection strength. We repeated the procedures for all 

correlation matrices, and built the weighted brain network for 

each subject at each fMRI scan point. 

F. Graph Theoretical Analysis of Brain Network 

Clustering coefficient and the characteristic path length are 

two basic parameters to character the local and the global 

topological properties of a network [18]. For a weighted graph, 

the weighted clustering coefficient of a node j is defined as 
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where js represents the strength of node j , which is defined 

as the sum of the weights ijw of the edges connected to node 

j , jk  is generally called the node degree, which is the 

number of the edges connected to the node j , and ija is the 

element of adjacency matrix[19]. The clustering coefficient of 

the whole network is then defined as the average of the 
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clustering coefficient of all nodes. The weighted characteristic 

path length is defined as 

1
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where 
w

ijl represents the weighted shortest path length 

between node i  and node j , and N represents the number of 

nodes in the network[20]. 

G. Statistical Analysis 

In this study, a linear mixed model was adopted to estimate 

the changes of network parameters over time [21]. This model 

takes advantages of the data from each patient, including the 

patients with data that may miss at some time points in 

follow-up. The model is as follows,  

ij i ij ijY b X      ,   1,2,...,i K ,  

where ijY  denotes a parameter of the brain network for the jth 

scan of the ith patient,   is the common intercept for all 

subjects, ib is the random intercept for each patient,   is the 

scalar of fix effect, ijX represents the logarithm of the value 

of time (in days) when the ith  patient was scanned after stoke 

onset, ij  is the residual error of this model, and K  is the 

number of patients. We estimated the parameters by the 
statistical analysis software Eviews6. 

III. RESULTS 

We divided the patients into two groups according to the 

lesion location, i.e. the right hemisphere-damaged group 

(n=5), and the left hemisphere-damaged group (n=7). For 

each patient, we obtained the fMRI data for subjects while 

they were performing the finger-tapping task by the ipsilateral 

and the contralateral hands respectively at each time point. 

Therefore, in total we had four categories of functional 

networks corresponding to the fMRI data for: (i) right 

hemispheric stroke with contralaterial finger tapping (denoted 

as RsTc networks)), (ii) right hemispheric stroke with 

ipsilateral finger tapping (denoted as RsTi networks), (iii) left 

hemispheric stroke with contralateral finger tapping (denoted 

as LsTc networks), and (iv) left hemispheric stroke with 

ipsilateral finger tapping (denoted as LsTi networks). The 

parameters for all the functional networks in four categories 

were calculated respectively.  

The clustering coefficient and the characteristic path length 

quantify the local information processing efficiency and the 

global information transfer efficiency of a network, 

respectively. For the network in each category, the trends of 

the characteristic path length over time were examined by 

linear mixed model. Results showed that the characteristic 

path length of the RsTi networks increased significantly 

(P<0.05) with the recovery of stroke (Fig.2); however, no 

significant changes of the characteristic path length were 

found in other three categories of networks. Furthermore, the 

trends of the network clustering coefficients were investigated  

 
Figure 2. Scatter plot of the characteristic path length over time for networks 

constructed by fMRI data recorded for the right hemispheric stroke subjects 

during ipsilateral finger tapping task (denoted as RsTi networks). Y-axis 

value denotes the characteristic path length. X-axis value denotes the 

logarithm of the value of time (in days) after stroke. The normalized 

characteristic path length significantly increases with respect to time after 

stroke onset. This result was estimated by linear mixed model (Eq.3), where 

the estimated β corresponds to the slope of the line in this figure, and the 

estimated μ represents the intercept of the line. 

 

 
 

Figure 3. Illustration of nodes with significantly changed clustering 

coefficients. Red spheres denote the nodes whose clustering coefficients 

significantly decreased during recovery, and green spheres denote the nodes 

whose clustering coefficients significantly increased. (A) the right 

hemispheric stroke group, (B) the left hemispheric stroke group. Brain 

surface visualizations were created using Caret software and the PALS 

surface [22, 23]. 

(2) 

(3) 

4134



  

 

as well, while no significant trends were observed during the 

recovery in all categories. In addition, we examined the 

clustering coefficients of every single node. The clustering 

coefficients of 26 nodes in the RsTc networks and 18 nodes in 

the LsTc networks were found to change (increased or 

decreased) significantly (P<0.05) over time, as demonstrated 

in Fig. 3. The increasing nodal clustering coefficients over 

time implied that the information processing efficiency 

increased in the corresponding local sub-networks. 

IV. DISCUSSION AND CONCLUSION 

The major findings in this study were (i) the characteristic 

path length increased over time, (ii) the clustering coefficient 

of network showed no significant change, while the clustering 

coefficients of some specific nodes changed (declined or 

increased) significantly (see the marked nodes in Fig. 3), when 

the brain underwent reorganization after the stroke onset. 

These results implied that the information processing 

efficiency in global network tended to decrease, while the 

information processing efficiency in some local sub-networks 

altered due to the reorganization during the recovery of stroke, 

which was in line with other studies [14, 24-26].  

In conclusion, the brain-wide functional networks of 264 

putative regions underwent reorganization during the stroke 

recovery, and shifted towards a non-optimal topological 

configuration. These findings based on graph theoretical 

analysis may broaden our knowledge about the functional 

reorganization of the brain during the recovery of stroke. 
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