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Abstract—Clinical studies had shown that EEG-based motor 

imagery Brain-Computer Interface (MI-BCI) combined with 
robotic feedback is effective in upper limb stroke rehabilitation, 
and transcranial Direct Current Stimulation (tDCS) combined 
with other rehabilitation techniques further enhanced the 
facilitating effect of tDCS. This motivated the current clinical 
study to investigate the effects of combining tDCS with MI-BCI 
and robotic feedback compared to sham-tDCS for upper limb 
stroke rehabilitation. The stroke patients recruited were 
randomized to receive 20 minutes of tDCS or sham-tDCS prior 
to 10 sessions of 1-hour MI-BCI with robotic feedback for 2 
weeks. The online accuracies of detecting motor imagery from 
idle condition were assessed and offline accuracies of classifying 
motor imagery from background rest condition were assessed 
from the EEG of the evaluation and therapy parts of the 10 
rehabilitation sessions respectively. The results showed no 
evident differences between the online accuracies on the 
evaluation part from both groups, but the offline analysis on 
the therapy part yielded higher averaged accuracies for 
subjects who received tDCS (n=3) compared to sham-tDCS 
(n=2). The results suggest towards tDCS effect in modulating 
motor imagery in stroke, but a more conclusive result can be 
drawn when more data are collected in the ongoing study. 

I. INTRODUCTION 

Stroke is the third leading cause of death and the leading 
cause of severe disabilities in the developed world [1]. With 
effective rehabilitation, stroke survivors can partially regain 
their motor control and continue their activities of daily 
living. Brain–computer interface (BCI) technology has the 
prospects of helping stroke survivors to interact with the 
environment through brain signals rather than through 
muscles, and to restore motor function by inducing activity-
dependent brain plasticity [2]. Current researches of BCI in 
this area include: using BCI to module specific EEG 
rhythms [3], using BCI to trigger functional electrical 
stimulation (FES) to assist movement practice [4], and using 
BCI to drive an orthosis and a robot to assist movement [5]. 

Since physical movements by stroke patients are often not 
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possible due to paralysis, motor imagery, which is the 
mental rehearsal of physical movement tasks, represents an 
alternate approach to access the motor system for 
rehabilitation at all stages of stroke recovery [6]. Since the 
capacity to perform motor imagery is not impaired by stroke 
[7], [8], it may be substituted for motor execution with the 
aim to activate the motor network in stroke [6]. However, 
motor execution can be checked by observation, but motor 
imagery is concealed within the patient. Thus it is difficult to 
assess the performance of motor imagery. Nevertheless, 
studies have shown that distinct phenomena such as event-
related desynchronization or synchronization (ERD/ERS) [9] 
are detectable from EEG during motor imagery in healthy 
subjects [10]. Hence, EEG-based motor imagery brain-
computer interface (MI-BCI) [11], which translates motor 
imagery into commands, can be used to objectively assess 
the performance of motor imagery [2]. However, as stroke 
patients suffer neurological damage to their brain, the 
portion of their brain that is responsible for generating 
ERD/ERS can be compromised. Nevertheless, a large recent 
clinical study had showed evidence that majority of stroke 
patients could operate EEG-based MI-BCI [12], and 
preliminary results had shown that EEG-based MI-BCI with 
robotic feedback rehabilitation is effective in restoring upper 
extremities motor function in stroke [13]. 

Transcranial Direct Current Stimulation (tDCS) is a 
noninvasive, safe, and relatively painless brain stimulation 
technique for modulating cortical activity, and is also used to 
facilitate treatments of various neurologic disorders [14]. 
tDCS delivers a weak polarizing electric current to the 
cortex through a pair of electrodes, and the increase or 
decrease in brain excitability depends on anodal or cathodal 
stimulation that is based on the polarity of the current flow 
[15]. Study had also shown that reducing excitability in the 
contra-lesional hemisphere by cathodal tDCS and enhancing 
excitability in the ipsi-lesional hemisphere by anodal tDCS 
improved motor performance in stroke [16]. Although 
studies had shown motor improvements using tDCS, recent 
studies using tDCS combined with other rehabilitation 
techniques suggested enhanced facilitating effect from tDCS 
[14]. Specifically, a study on the use of transcranial Direct 
Current Stimulation (tDCS) with robot-assisted arm training 
was shown to improve motor function in stroke [17]. 
Although a study had shown that EEG-based MI-BCI with 
robotic feedback was effective in restoring upper extremities 
motor function in stroke [13], to the best of the authors’ 
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knowledge, there is currently no clinical study that 
investigated the effects of combining tDCS with EEG-based 
MI-BCI and robotic feedback rehabilitation in stroke.  

II. TDCS AND MI-BCI WITH ROBOTIC FEEDBACK 

Although studies had demonstrated the efficacy of tDCS 
[18], [19], and EEG-based MI-BCI with robotic feedback in 
post-stroke motor recovery [13], to the best of the author’s 
knowledge, the combination of both modalities for post-
stroke motor recovery is not investigated. Since a study 
using transcranial magnetic stimulation had shown that 
motor cortical excitability increased for up to 90 minutes in 
subjects who received tDCS [20], the feasibility of coupling 
both modalities by first inducing long-lasting excitability 
modulation using tDCS followed by EEG-based MI-BCI 
with robotic feedback stroke rehabilitation is thus potentially 
feasible. However, the mechanisms of tDCS in facilitating 
motor imagery and subsequently the efficacy in post-stroke 
motor recovery remains to be investigated. This motivated 
the study on the effects of tDCS on the EEG data collected 
while subjects performed MI-based MI-BCI with robotic 
feedback compared to sham-tDCS as shown in Figure 1. 

 

(a) 

(b) 
Figure 1. Setup of (a) transcranial Direct Current Stimulation (tDCS) and 
(b) EEG-based Motor Imagery Brain-Computer Interface (MI-BCI) with 
robotic feedback rehabilitation for stroke in a local hospital. The same setup 
is employed for sham-tDCS. 

 

III. EXPERIMENTAL STUDY 

This section describes the clinical study, with approval 
from the Ethics Approval Board, to investigate the effects of 
tDCS on hemiparetic stroke patients while undergoing EEG-
based MI-BCI with robotic feedback rehabilitation 
compared to sham-tDCS. 

A. Analysis on EEG from screening session 

To-date, 19 BCI naïve hemiparetic stroke patients were 
recruited from a neurorehabilitation facility linked to the 
local hospital with an acute stroke unit. Since a study had 
shown that not all BCI naïve stroke patients could operate 
EEG-based MI-BCI [12], the patients recruited first 
underwent a MI-BCI screening session. 27 channels of EEG 
data were collected from each subject using Nuamps 
acquisition hardware (http://www.neuroscan.com) with 
unipolar Ag/AgCl electrodes sampled at 250 Hz. A total of 
160 trials of EEG that randomly comprised 80 motor 
imagery of the stroke-affected upper limb and 80 idle 
condition were collected. Each trial lasted approximately 
12 s. For each trial, the subject was first prepared with a 
visual cue for 2 s on the screen, and another visual cue then 
instructed the subject to perform motor imagery or idle for 
4 s, followed by 6 s of rest. The subjects were advised to 
minimize any body movement throughout the process. 10 
minutes of rest were given in between every 40 trials. The 
160 trials of data were then analyzed offline without any 
removal of artifacts such as Electrooculogram (EOG). 

Figure 2 shows the results of performing 1010-fold 
cross-validations using the Filter Bank Common Spatial 
Pattern (FBCSP) algorithm [21], [22] on the EEG data 
extracted 0.5 to 2.5 s after the visual cue from the screening 
session. The accuracies in classifying motor imagery from 
the idle condition from the EEG for each subject were sorted 
in ascending accuracy. The results showed that 13 subjects 
(68%) operated the MI-BCI better than chance level. 

 

 
Figure 2. Plot on the off-line accuracies of classifying motor imagery (MI) 
of the stroke-affected hand versus the idle condition by 19 patients. The left 
vertical axis represents the accuracies of classifying MI and idle computed 
from 10×10-fold cross-validations. The horizontal axis represents the 
patients sorted by increasing accuracy. 

 

B. Analysis of EEG from rehabilitation sessions 

5 out of the 13 recruited subjects who passed the 
screening sessions gave further consent and completed the 
subsequent 10 rehabilitation sessions to investigate the 
efficacy of tDCS and EEG-based MI-BCI with robotic 
feedback stroke rehabilitation compared to sham-tDCS. The 
remaining 8 recruited subjects were either currently 
undergoing the clinical trial, or did not give further consent 
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for further study. Each subject enrolled for the study was 
randomized into either the tDCS or the sham-tDCS group.  

Subjects in both groups first underwent a calibration 
session whereby the stroke affected-limb of the subject was 
strapped to the MIT-Manus robot. The EEG data were 
collected using 27 channels using Nuamps acquisition 
hardware similar to section III.A. 160 trials of EEG were 
collected from a total of 4 sessions that comprised 80 MI of 
stroke-affected upper limb and 80 idle condition using the 
12-second protocol similar to section III.A.  

Subsequently, the subjects in both groups underwent 10 
rehabilitation sessions for 2 weeks, 5 times a week. Each 
rehabilitation session comprised of 20 minutes of tDCS or 
sham-tDCS, followed by 8 minutes of evaluation and 1 hour 
of therapy using EEG-based MI-BCI with robotic feedback. 
For subjects in the tDCS group, direct current was 
transferred to the subjects using a saline-soaked pair of 
surface sponge electrode from a battery-operated constant 
current stimulator with a maximum output of 10 mA through 
a non-metallic conductor rubber electrode. Stimulation was 
conducted at an intensity of 1 mA with the anode placed 
over the M1 motor cortex of the ipsi-lesional hemisphere 
and the cathode placed over the contra-lesional M1. For 
subjects in the sham-tDCS group, the current was only 
applied for 30 s to give the sensation of the stimulation [23]. 

During the evaluation part of each rehabilitation session, 
the online accuracy of detecting motor imagery was first 
evaluated by collecting 40 trials that comprised 20 MI of the 
stroke-affected upper limb and 20 idle condition. The online 
accuracy was computed by using the FBCSP algorithm [21], 
[22] on the EEG data extracted 0.5 to 2.5 s after the visual 
cue from the calibration session of the same subject, and 
evaluated online during the evaluation part of the 
rehabilitation session. 

To-date, 3 and 2 subjects from the tDCS and sham-tDCS 
group have completed the 10 rehabilitation sessions of the 
ongoing clinical trial. Preliminary analyses on the data from 
these 5 subjects are then presented as follows: 

Figure 3 shows the averaged online accuracies of 
detecting motor imagery versus the idle condition across the 
evaluation part of the 10 rehabilitation sessions. The results 
showed deviation of online accuracies across subjects and 
sessions. The results also showed that the average online 
accuracy is approximately 67% from both groups, and there 
is no evidence that one group yielded higher online detection 
accuracy across the sessions than the other group. 

The therapy part of each rehabilitation session involved a 
total of 160 trials of EEG that comprised entirely of motor 
imagery of the stroke-affected upper limb. 10 minutes of rest 
were given in between every 40 trials. If MI was detected, a 
movement feedback was provided by the MIT-Manus robot 
in moving the stroke-affected limb towards the goal display 
on the screen, and back to the origin of the clock game 
interface similar to the study performed in [13]. The EEG 
data from the therapy part of each rehabilitation session were 
collected for offline analysis. 

 

 
Figure 3. Plot on the average online accuracies of detecting motor imagery 
(MI) of the stroke-affected hand versus the idle condition for the tDCS and 
the sham-tDCS group. The left vertical axis represents the accuracies of 
detecting MI and idle condition computed during online evaluation part of 
the rehabilitation sessions using the FBCSP algorithm trained on data from 
the calibration session. The horizontal axis represents the 10 rehabilitation 
sessions that the patients underwent. 

 
Figure 4. Plot on the average off-line accuracies of classifying motor 
imagery (MI) of the stroke-affected hand versus the background rest (BR) 
condition for the tDCS and the sham-tDCS group. The left vertical axis 
represents the accuracies of classifying MI and BR computed by performing 
session-to-session transfer using the FBCSP algorithm trained on data from 
the calibration session to the therapy part of each of the 10 rehabilitation 
sessions. The horizontal axis represents the 10 rehabilitation sessions that 
the patients underwent. 

 

Offline analysis of classifying motor imagery from the 
background rest condition was then performed on the 
therapy part of each rehabilitation session. The EEG data of 
motor imagery were extracted 0.5 to 2.5 s after the visual 
cue was shown to the subject, and the EEG data of the 
background rest were extracted 0.5 to 2.5 s before the visual 
cue was shown to the subject.  

Figure 4 shows the averaged accuracies of the session-to-
session transfer of the calibration session to the therapy part 
of each of the 10 rehabilitation sessions. The results showed 
that the averaged accuracies of the subjects from the tDCS 
group across the 10 rehabilitation sessions are higher than 
the averaged accuracies of the subjects from the sham-tDCS 
group. However, the results are not statistically significant 
due to the large deviations of the accuracies across subjects 
and due to the small number of subjects in each group. 
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IV. CONCLUSIONS 

This paper presented the preliminary results from an 
ongoing clinical study that investigates the effects of 
transcranial Direct Current Stimulation (tDCS) and EEG-
based Motor Imagery Brain-Computer Interface (MI-BCI) 
with robotic feedback compared to sham-tDCS for upper 
limb stroke rehabilitation. Since a study had shown that 
motor cortical excitability increased for up to 90 minutes in 
subjects who received tDCS [20], this study investigates 
whether the application of tDCS will increase the cortical 
excitability to facilitate motor imagery leading to improved 
functional outcomes of motor recovery when combined with 
MI-BCI and robotic feedback stroke rehabilitation.  

The subjects recruited first underwent MI-BCI screening 
session, and the results showed that 68% of stroke subjects 
operated the MI-BCI better than chance level. This is lower 
than the 89% reported for a larger study [12], probably due 
to differences in the screening protocol and lower number of 
patients screened. Furthermore, the ongoing clinical study 
has not yet recruited sufficient stroke patients to yield 
conclusive functional outcomes between the tDCS and 
sham-tDCS group. Nevertheless, the results of online and 
offline accuracies in detecting and classifying motor imagery 
for 3 and 2 patients from the tDCS and sham-tDCS group 
who completed the 10 rehabilitation sessions are presented.  

The results on the evaluation part of each rehabilitation 
sessions showed that the average online accuracy of 
detecting motor imagery versus the idle condition was 
approximately 67% from both groups, and there were no 
evident differences between the accuracies from both 
groups. Since the therapy part of the rehabilitation session 
only involved the performance of motor imagery for all the 
trials, the result showed that the FBCSP algorithm [21], [22] 
used was effective in detecting motor imagery, and the 
performance was almost the same for both groups. 

The offline analysis on classifying the MI and background 
rest of the EEG data from the therapy part of the 
rehabilitation session showed that the averaged accuracies of 
the subjects from the tDCS group across the 10 rehabilitation 
sessions were higher than the sham-tDCS group. Although 
the results were currently not statistically significant, due to 
the large deviations across subjects and the small number of 
subjects in each group, the results suggest towards tDCS 
facilitating effect in modulating motor imagery. 
Nevertheless, a more conclusive result could be drawn when 
data from more patients are available in the ongoing study. 
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