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Abstract— One of the obstacles in the development of 

rehabilitation robotics has been inadequacy in the 

measurement of treatment effects due to interventions. A 

measurement tool that will efficiently produce a large reliable 

sample of measurements collected during a single session that 

can also produce a rich set of data which reflects a subject’s 

ability to perform meaningful functional activities has not been 

developed. This paper presents three linear regression models 

generated from seven kinematic measures collected during the 

performance of virtually simulated rehabilitation activities that 

were integrated with haptic robots by 19 persons with upper 

extremity hemiparesis due to chronic stroke. One of these 

models demonstrated a statistically significant correlation with 

the subjects’ scores on the Jebsen Test of Hand Function 

(JTHF), a battery of six standardized upper extremity 

functional activities. The second and third models 

demonstrated a statistically significant correlation with the 

subjects’ change scores on the JTHF.  

 

 

 

I. INTRODUCTION 

Robotics have been examined as a possible modality for the 

remediation of upper extremity (UE) impairments caused by 

stroke for over two decades. One of the obstacles in the 

development of these technologies has been the inadequacies 

in the measurement of treatment effects due to 

interventions[1]. UE function is a varied and complex set of 

behaviors with a multitude of factors affecting the ability to 

use an impaired UE in the real world. Clinical measurements 

of function typically produce fairly volatile results with 

patients performing extremely well during the performance 

of a single repetition of an activity and then poorly on the 

next[2]. In addition, these clinical tests typically produce a 

single piece of information describing a single aspect of 

movement, necessitating a wide variety of tests to be 

performed to produce a data set that will reflect the whole of 

UE ability. Developing a measurement tool that will 

efficiently produce a larger more reliable sample of 

measurements collected during a single measurement 

session, that can also produce a rich set of data may be 
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necessary to produce a useful picture of a patient’s motor 

function. 

Utilizing robots to collect kinematics during simulated UE 

activity may fulfill these requirements. The robots can 

collect data as patients perform large number of repetitions 

of these activities in a short time. Robots can also collect 

meaningful measurements of the various roles of the UE in a 

single repetition, decreasing the number of movements that 

are needed for testing. 

The largest obstacle in the utility of these measurements is 

the need to establish that measurements of an UE interacting 

with a robot will reflect the ability to interact with real world 

objects [3]. This paper will attempt to establish the 

development of mathematical models of a set of kinematic 

measurement of shoulder, elbow and finger movement, 

collected during three hour sessions interacting with the 

New Jersey Institute of Technology Robot-Assisted Virtual 

Rehabilitation (NJIT RAVR) system performing integrated 

UE tasks. These models will be developed and tested three 

ways,  first, for their correlation with scores on the JTHF 

measured on the same day by the same subjects, second, for 

a model of pre to post test changes of these measures to 

correlate with changes in JTHF score subsequent to an eight 

session intervention using the NJIT RAVR System and  

third, we will examine the correlation of a model of pretest 

kinematic measurements scores with pre to post test change 

scores on the JTHF Test of Hand function, subsequent to an 

eight session intervention using the NJIT RAVR system.  

II. METHODS 

A. Subjects 

Subjects were a group of 19 persons mean age 56 (±13) at 

least 9 months post stroke (mean=70 months ± 66). Eighteen 

had ischemic strokes, one a hemorrhagic stroke, that resulted 

in mild to moderate UE impairment.  Mean Chedoke 

McMaster Impairment Inventory Arm Stage was 5(±1). 

Mean Chedoke McMaster Impairment Inventory Arm Stage 

was 4 (±1)[4]. Mean composite of Ashworth Scale scores for 

shoulder extensors, elbow and finger flexors was 4 (±1).  

B. Training System & Schedule 

Subjects trained using the NJIT RAVR system, which is a 

combination of a Haptic Master ™, (Moog, The 

Netherlands), a three degrees of freedom robot (position of 

the wrist in three dimensional space accomplished by 

movement of the elbow and shoulder), a ring gimbal  

(Moog, The Netherlands) which adds an additional 3 degrees 

of freedom (forearm: yaw, pitch and roll) and a  

CyberGlove™ (Ascension, USA). This combination 

measures arm and finger positions in three dimensional 

space that are  interfaced with a suite of complex virtual 
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simulations used to retrain integrated movements of the arm 

and hand in persons with strokes. The second training 

system is the NJIT Trackglove system, a combination of a 

CyberGlove™ (Ascension, USA) and a trackStar 3-

dimensional magnetic tracking system, which is used to 

measure hand and finger movements integrated with  virtual 

environments in a similar fashion to that of the NJIT RAVR 

system. These systems are described in detail elsewhere [5, 

6]. The training period was 8 days, 2-3 hours with subjects 

performing four simulations that train the hand, arm and 

fingers as an integrated functional unit each day. The 

protocol is described in detail elsewhere [7].  

C. Data Collection  

 Robotically collected kinematics Subjects performed 

training using four simulations but kinematics measurements 

were collected during two simulations, the Hammer Task 

simulation and the Virtual Piano Trainer simulation, because 

these two simulations utilize discrete movements that are 

well suited for kinematic measurements. Kinematic 

measures described in this study were collected during the 

first day of training and the last day of training. 

Clinical test of UE function for this study was the JTHF, a 

battery of six standardized functional activities, involving 

the manipulation and transport of small objects [10]. The six 

items are timed and summed, making smaller numbers 

indicative of better performance. This data was collected one 

day prior to training and one day after the completion of 

training.  

D. Primary Data Analysis  

Robotically collected kinematics for the hammer task 

include hand-path length, a linear measurement of total path 

the hand goes in order to reach the target. Overall time to 

complete the Hammer simulation task in seconds is reported 

as hammer duration. Trajectory smoothness, a measurement 

of  the ability to produce smooth, coordinated, gross 

reaching movements, is analyzed using normalized 

integrated jerk(NIJ).NIJ was calculated as follows:  

 

(1) 

 

where T= duration(s), L = Length of trajectory(cm),J is jerk, 

the third derivative of hand displacement. Lower NIJ score 

indicates smoother hand trajectory. 

Finally, we evaluated end point deviation (EPD), a 

measure of proximal stability and shoulder stabilization 

during hand-object interaction[8].This variable is measured 

in centimeters and calculated: 

                         EPD= (E1+E2+E3……….+Efinal)              (2) 

where E1= one  second average of distance between endpoint 

and target center after target has been acquired, and Efinal= 1 

second average of distance between endpoint and target 

center immediately preceding target completion. Lower EPD 

score indicates more stability of the arm during hand-object 

interaction. These kinematic measurements are discussed in 

greater detail in [5] and [9]. 

 

Virtual piano kinematics include key press accuracy, the 

total number of correct keys pressed during virtual piano 

trainer simulation performance during a training day divided 

by the total number of keys pressed.  Piano duration is the 

average time to complete a key press starting when a note is 

cued and ending when the correct key is pressed. 

Fractionation score (FS) describes the ability to flex a finger 

independently of other fingers. FS is calculated as follows:  

                       FS          –                                                       (3) 

Where βactive is the angle of the active finger’s metacarpo-  

 phalangeal (MCP) joint and βnonactive is the MCP angle of the 

most flexed inactive finger . These kinematic measurements 

are discussed in greater detail in [6]. 

E. Secondary Data Analysis 

In order to evaluate the correlation between kinematics 

and clinical measurements to test each of the three 

hypotheses, two different regression analysis approaches 

were used. Since the points in residual plots were randomly 

dispersed around the horizontal axis we decided to find a 

linear regression model that can estimate JTHF. In the first 

approach, we calculated the model to estimate from all robot 

kinematics. Certain aspects of the kinematic measurements 

are dependent upon each other. In an effort to eliminate co-

linearity we conducted a principal component analysis 

(PCA) followed by a stepwise regression to eliminate 

kinematic metrics whenever possible. There were seven 

measurements each with different units, we normalized the 

data so that the mean is 0 and standard deviation is 1 for 

each measurement, prior to PCA process. Following this 

step, least squares error multiple linear regression models 

were constructed. Finally, performance for each of the three 

models was measured by the correlation between the 

predicted JTHF score and the actual JTHF score using a 

Pearson Correlation coefficient. 

 

 
 
Figure 1.  Scatter plot of actual scores on 
JTHF in seconds on x-axis and model-predicted JTHF score 

on y-axis. Each subject is represented by two points, one for 

pre-test data and a second for post-test data. Lower values 
indicate better score. 
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III. RESULTS 

A.  Predicting single scores. 

The model utilizing pre-test kinematic measurement 

scores to predict pretest JTHF scores and post test kinematic 

scores to predict post-test JTHF scores was: 

JTHF= 101.8044 + (13.3469×[key press accuracy]) – 

(1.0484×[piano duration]) – (31.1721×[FS]) + (53.2945× 

[hand-path length]) - (29.1174×[hammer duration]) + 

(12.2301×[smoothness]) + (17.9140×[EPD]).                    (4) 

Correlation between JTHF scores predicted by this model 

and actual JTHF scores was moderate (R
2
=0.5702,    

p=1.06e-04).  

Following step wise regression, an enhanced model 

predicting JTHF scores from kinematic measures was as 

follows: 

JTHF = 95.8746 + (11.1763 × [key press accuracy]) – 

(31.7069 × [FS]) + (36.2125×[hand-path length]) + (15.2958 

× [EPD]).                                                                           (5) 

Correlation between JTHF scores predicted by this model 

was moderate (R
2
=0.5579,   p=3.4206e-06). 

B. Predicting change in JTHF scores with change in 

kinematic measurements. 

The model utilizing change scores for the seven kinematic 

measurement scores to predict change scores on the changes 

scores on the JTHF  

JTHF = 12.0449 + (24.9018 × [key press accuracy]) + 

(15.8544 × [piano duration]) + (28.5961 × [FS]) - (25.9248 

× [hand-path length]) + (34.5042 × [hammer duration]) – 

(0.5341 × [smoothness]) - (22.1432 × [ EPD]).                 (6) 

Correlation between JTHF scores predicted by this model 

and actual JTHF scores was moderate to high (R
2
= 0.7371,     

p=0.009). 

 

Following step wise regression, an enhanced model 

predicting JTHF scores from kinematic measures was as 

follows: 

JTHF = 47.5178 + (7.3581 [key press accuracy]) + (32.3683 

[FS]) – (4.4018 [hand-path length]) – (13.9073 [EPD]).   (7) 

Correlation between JTHF scores predicted by this model 

and actual JTHF scores was moderate (R
2
=0.5404,    

p=0.0105).  

C. Predicting change in JTHF scores with initial kinematic 

measurements. 

The model utilizing change scores for the seven kinematic 

measurement scores to predict change scores on the changes 

scores on the JTHF:  

JTHF = -59.1830 + (11.9672 × [key press accuracy]) + 

(14.4097 × [piano duration]) + (7.2316 × [FS]) – (34.8526 × 

[hand-path length]) + (50.7833 × [hammer duration]) – 

(20.7707 × [ smoothness]) – (17.9889 × [EPD]).              (8) 

Correlation between JTHF scores predicted by this model 

and actual JTHF scores was moderate (R
2
=0.6423,     

p=0.0417).  

Following step wise regression, an enhanced model 

predicting JTHF scores from kinematic measures was as 

follows: 

JTHF = -20.2434 + (11.9967 × [key press accuracy]) –

(64.0764 × [hand-path length]) + 66.7717 × [hammer          

duration]  – (22.4390× [EPD]).                                         (9) 

Correlation between JTHF scores predicted by this model 

and actual JTHF scores was moderate (R
2
=0.5587, p=0.008).  

IV. DISCUSSION 

Use of mathematical modeling of robotically collected 

kinematics has been attempted previously by Bosecker et al 

[3]. This group utilized a set of kinematics measured during 

a set of planar reaching tasks performed with the MIT-

MANUS system to predict scores on the UE Fugyl-Meyer 

 
Figure 2.  Scatter plot of change scores for JTHF in seconds (pre test 

score minus post test score) on x-axis and model predicted scores on y 

axis. Model was generated from change in kinematics (pre test scores 
minus post test scores) and actual JTHF scores  

 

 
 
Figure 3.  Scatter plot of change scores for JTHF in seconds (pre test 

score minus post test score) on x-axis and model predicte scores on y-
axis. Model was generated from pre test kinematics scores.  
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Assessment, Modified Ashworth Scale, Motor Status Score 

and Motor Power Scale. This study was the first successful 

attempt to compare the ability of an array of kinematic 

measurements collected during the interaction of patients 

with stroke and a robot to their ability to move in the real 

world. Several statistically significant correlations between 

the models produced and these impairment level measures 

were identified.   

The process described in this paper extends this work by 

evaluating the ability of a model of robotic kinematics to 

describe the ability of persons with stroke to produce more 

complex, functional movements involving both object 

manipulation and transport. The ability of the NJIT RAVR 

and TrackGlove systems to collect kinematic data related to 

both proximal and distal movements may be critical to this 

ability as suggested by the retention of both proximal UE 

kinematic data as collected by the NJIT RAVR system and 

distal UE kinematic data as collected by the TrackGlove 

system in all three of the regression enhanced models.  

The ability to measure proximal stabilization of the 

shoulder and elbow during object interaction may be of 

relative importance as well. All three regression enhanced 

models retained this metric which is unique to the NJIT 

RAVR system secondary to its ability to measure proximal 

kinematics during distal UE effector activity.  

The statistically significant correlation between JTHF 

scores predicted by model utilizing change scores in robotic 

kinematics and actual changes in JTHF scores, suggests that 

improvements in in robotically collected kinematics may 

relate to changes in the ability to move independent of the 

robot.  This could form the beginning of an argument 

supporting the use of robotic kinematics as an outcome 

measurement for trials of robotic rehabilitation independent 

of cross validation with clinical scores. Sensitivity to change 

due to an intervention is an important step in the validation 

of a measure of movement for use as an outcome measure in 

rehabilitation trials.  

The statistically significant correlation between JTHF 

scores predicted by model utilizing pretest scores in robotic 

kinematics to predict and actual changes in JTHF scores may 

be the most important of the three discussed in this abstract. 

Rehabilitation interventions are expensive and time intensive 

for patients. Screening a potential patient for the ability to 

make functional improvements subsequent to a 24 hour 

robotic intervention as is described in this paper with 

approximately one hour of data collection would be an 

important step toward making robotic rehabilitation more 

cost efficient. 

Several further studies will be necessary to evaluate our 

models conclusively. A larger sample of subjects with a 

broader range of impairments will need to be tested and 

validation of the predictive ability of models utilizing 

kinematic measurements of subjects not included in the 

development of the models will be necessary.  

 

V. CONCLUSION 

We developed three linear regression models using 

kinematic measurements during training sessions utilizing 

two different systems of virtually simulated activities 

interfaced with haptic robots performed by persons with UE 

hemiparesis secondary to stroke. These models demonstrated 

statistically significant correlations with single scores and 

change scores on the JTHF as performed by the same 

subjects.  
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