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motor rehabilitation of the upper limb

F. Cincotti}®*, Member, IEEE, F. Pichiorri'3, P. Aricol'2, F. Aloise!'2, F. Leottal2, F. de Vico Fallani®,
J. del R. Millan*, M. Molinari®, and D. Mattia'

Abstract— Brain-Computer Interfaces (BCls) process brain
activity in real time, and mediate non-muscular interaction
between and individual and the environment. The subserving
algorithms can be used to provide a quantitative measurement
of physiological or pathological cognitive processes — such as
Motor Imagery (MI) — and feed it back the user.

In this paper we propose the clinical application of a BCI-
based rehabilitation device, to promote motor recovery after
stroke. The BCI-based device and the therapy exploiting its
use follow the same principles that drive classical neuromotor
rehabilitation, and (i) provides the physical therapist with a
monitoring instrument, to assess the patient’s participation in
the rehabilitative cognitive exercise; (ii) assists the patient in
the practice of MI.

The device was installed in the ward of a rehabilitation
hospital and a group of 29 patients were involved in its
testing. Among them, eight have already undergone a one-
month training with the device, as an add-on to the regular
therapy.

An improved system, which includes analysis of Electromyo-
graphic (EMG) patterns and Functional Electrical Stimulation
(FES) of the arm muscles, is also under clinical evaluation.

We found that the rehabilitation exercise based on BCI-
mediated neurofeedback mechanisms enables a better engage-
ment of motor areas with respect to motor imagery alone and
thus it can promote neuroplasticity in brain regions affected
by a cerebrovascular accident. Preliminary results also suggest
that the functional outcome of motor rehabilitation may be
improved by the use of the proposed device.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) collect the physical cor-
relates of the brain activity (e.g. the Electroencephalogram,
EEG), and process them in real time, with the aim of
executing actions on the users environment and/or providing
the user with a feedback of specific processes occurring in
the brain.

Classically, BCIs have been targeted to the restoration of
communication functions in individuals with severe motor
disabilities, or more generally their ability to interact with
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the environment. Since a BClIs is based on the detection of
the occurrence of physiological or pathological brain activity,
it can be used to provide a quantitative measure of such
cognitive processes, which can be fed to a therapist, or back
to the user.

One of the most recent and promising application fields
of the BCI technology targets motor rehabilitation of stroke
patients [1]. In fact, the practice of motor imagery (MI)
has been suggested to improve motor recovery after stroke,
by inducing use-dependent plastic changes in the lesioned
hemisphere [2], [3]. In this respect, EEG-based BCI systems
operated via MI appear to be a promising option to promote
restoration of motor function after stroke, by exploiting the
neuroplasticity phenomena induced on the motor cortex by
the BCI training [4].

In an effort to deploy a practical EEG-based BCI system
as an effective post-stroke rehabilitation training tool, it is
crucial to define which EEG patterns (sensorimotor rhythms,
SMR) are expected to correlate with desirable neuroplasticity
and thus reinforced through the BCI training. Moreover, to
effectively encourage training and practice the BCI design
should incorporate principles of current rehabilitative set-
tings, suitable to stimulate patients’ engagement during the
exercise.

In addition to helping the practice of MI, a comprehensive
BCl-driven rehabilitative device can also monitor the residual
muscular patterns of the affected limb, and drive Functional
Electrical Stimulation (FES), to close the loop between motor
intention and sensory perception. The ultimate goal is to let
the patients re-learn their motor scheme by having voluntary
(covert and/or overt) access to the affected limb.

Two versions of the device are available, characterized by
different input signals and feedbacks:

o pure EEG-based BCI, with visual feedback delivered in

form of virtual hands returning the illusion of movement

o hybrid BCI (EEG + electromyogram — EMG), with

multimodal feedback generated by the actual movement
of the affected hand aided by FES

Both versions are meant to provide patients with an con-
textually enriched feedback, in order to facilitate the practice
of voluntary covert and/or overt access to the affected hand.
A rehabilitation intervention based on the proposed system
was assessed during a clinical trial.

The rest of the paper is organized as follows. The first
version of the rehabilitative device is described in Section
I, where the preliminary results of an ongoing clinical
trial aimed to its validation are also reported. The second
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Fig. 1. Training session with the novel EEG-based BCI system. In
this session, two actors take part: the patient and the therapist. The
patient is trained to gain control of the visual hand representation
by imagining hand movements and receives as a feedback the
congruent movements of the represented hand. The therapist is fed
back with the real-time movement of a cursor on a screen that is
actually controlled by the patient EEG relevant feature.

version of the system is described in Section III. Results are
discussed in Section IV, and conclusions are summarized.

II. BCI-BASED THERAPY WITH VISUAL
FEEDBACK

A. Description of the system

Figure 1 shows the system during a rehabilitation session.
The patient seats in a comfortable chair/wheelchair with
hands resting on a desk in front of him where adjustable
forearm orthosis provided support. Over his hands a white
sheet is laid and cue and feedback for the patients is projected
on this sheet with a beamer.

A dedicated software provides a visual realistic represen-
tation of the patients hands (matched in shape, colour, size),
which is projected on the blanket. Different levels/shapes of
lighting of the virtual hands provide an ecological cueing of
the successive steps in each trial (“relax”, “get ready”, “start
imagery”, “end of trial”). The matched hand representation
generates a visual illusion of hand movement each time (trial)
the patient successfully controls the grasping or the opening
of the virtual hand. Success or failure of each trial of the
exercise is evaluated by integrating the BCI output through
the duration of the trial, and comparing with a threshold
defined during the calibration procedure.

The BCI section of the system processes EEG data col-
lected from 32 electrodes (superset of the 10-20 interna-
tional system, with additional sensors distributed over the
sensorimotor breain areas). EEG data are conditioned (0.1-
70 Hz bandpass filtering, Common Average Reference), and
their spectral distribution is estimated using a Maximum
Entropy Method analysis. A linear combination of features
(e.g. power in a each frequency bin on a each channel) is used
to build the output signal which, after an adaptive normal-
ization, is used as a measure of the involvement of the motor
cortical areas, and graphically represented as a cursor to the
therapist. The subset of relevant features, and their weight in
the linear combination is obtained offline from data acquired
in a screening session (61 EEG channels, patient performing

the same tasks as in the training). Data acquisition, on-
line EEG processing and communication with the display
software (see below) was performed by a modified version
the BCI2000 software [5] .

The rehabilitation exercises including the BCI-based tool
were designed in a way that the therapist-patient relationship
is reinforced. In fact, the BCI-based device is meant to be
an instrument in the hands of the therapist. In this sense, the
training session involved two actors: patient and therapist.

During the session, the therapist is allowed to continu-
ously monitor the patients mental activity by means of the
BCI feedback (currently a moving cursor) displayed on a
dedicated screen. By doing this, the therapist can verbally
either reward the patient or correct his/her performing. Only
discrete feedback is given directly to the patient, at the
end of each trial, to avoid the development of opportunistic
strategies to take control of the BCI output.

B. Methods of clinical evaluation

A prototype of the system has been installed in one of
the rehabilitation wards of Fondazione Santa Lucia, and
personnel (physiotherapists and EEG technicians) have been
trained to use it.

1) Screening: Data were collected from 29 patients with
first ever monolateral stroke. Patients were asked to either
imagine (MI) or execute/attempt (ME) hand grasping with
unaffected (UH) and affected hand (AH), being instructed
by a visual cue. R? values (task vs. rest) were compiled in
a channel by frequency matrix and evaluated to identify the
set of candidate features that separated best rest vs. a given
motor task.

2) Training: Eight of these patients underwent a MI-
based BCI training as add-on to their conventional therapy,
during which they were asked to control the movement of a
visual representation only of their own AH by MI; training
comprised 4 runs of 20 trials per session, 3 sessions per
week, and lasted one month.

C. Evaluation Results

Overall, the protocol was well accepted by both patients
and therapists; participation was high.

The averaged channel/frequency matrices are illustrated in
Figure 2. R? values were higher for the UH condition (0.15
ME, 15 subjects averaged; 0.08 MI, 18 subjects averaged)
than the AH condition (0.08 ME; 0.06 MI). Fig. 3 shows
the grand average reactivity of SMR, before and after a one-
month training, showing an increased reactivity of both alpha
and beta bands. Functional outcome, as measured through
three clinical scales (Fig. 4) is tendentially improved in the
target group of patients with respect to the control group,
which practiced the same MI task without support of a BCL.
Even with small sample groups (N=8+8), the arm section
of the Medical Research Council Scale reaches statistical
significance (p < 0.05).
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Fig. 2. Spectral changes in the EEG rhythms during hand grasping movement and imagery; grand average over 29 stroke patients. On the left and
right panels, the channel/frequency matrices (horizontal and vertical axis, respectively) obtained by compiling the R? values averaged across patients and
relative to overt and covert motor tasks are shown. Note that before averaging, the electrode positions relative to each scalp side have been flipped in order
to respect the non-homogeneity of patient lesion side. According to this procedure, the top region of each panel represents the activity of the affected
hemisphere; vice versa the unaffected hemisphere is represented in the bottom region. Electrodes of the midline are represented between the two, in the
middle part of each panel. Colored bars code for the decrease (in blue) and increase (in red) of the EEG spectral signal amplitude, quantified by the signed
R2 values scaled on the right side of the bars.
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!‘ Fig. 4. Relative changes (before-after training) of clinical functional scales

evaluated in the group (bci, N=8) trained with the BCI-based tool, and in
the control group (ctrl, N=8). FM: arm Fugl-Meyer scale (arm F-M); ESS:
European Stroke Scale; MRC: arm section of the Medical Research Council
Scale). All scales show a trend in favor of the BCI group.
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III. HYBRID BCI-BASED DEVICE WITH
MULTIMODAL FEEDBACK

Fig. 3. Grand average (N=8) of significant spectral power changes (color
coded) of EEG rhythms between task and rest conditions, before (left panels)
and after (right panels) one month training with the BCI-based device. Top

row: alpha band; Bottom row: beta band. A. Overview of the system

The second rehabilitation device relies on a hybrid BCI,
i.e. both EEG and EMG are fed into the BCI. Modularity of
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the hybrid BCI was specifically taken into account, through
extensive use of standardized interfaces [6] between pro-
cessing modules. A unique stream of biosignals (formatted
according to the specifications of the The TOBI Interface
A — TiA) is created by a Signal Server, which collects
data from three 16-channels biosignal amplifiers (gUSBamp,
g.Tec, Austria). TiA strams are simultaneously fed into two
parallel processing pipes, which deal with EEG and EMG
signals respectively. The output of these elemental BClIs is
formatted according to the TOBI interface C (TiC) format,
and fed into a fusion module, which (i) implements the rules
according to which the feedback is given to the patient, and
(ii) forwards several relevant time series to the therapist’s
screen.

The EMG classifier is implemented in Matlab, and features
similar connections as the EEG classifier (TiA from the
Signal Server, TiC to the Fusion Module). The Fusion
Module, also implemented in Matlab receives classification
outputs from both the SMR and the EMG classifiers, and
transforms them into “fusion classes” that manage the FES
Controller. The patient is delivered a Functional Electrical
stimulation which induces/assists the correct motor exercise
required by the therapist (finger flexion or extension). Fig.
?? shows an overview of the software and hardware hybrid
system.

B. Classification and fusion of EEG and EMG data

The EEG processing pipe is substantially identical to the
one described in Section II. The output signal measures the
involvement of motor areas in the imagined/attempted motor
exercise.

For EMG classification, extraction of the Linear Envelope
is used to obtain a signal that is directly correlated with the
strength of contraction. Four muscular groups are considered
— flexor and extensors of fingers, flexor (biceps) and extensor
(triceps) of the arm. The pattern of muscular activation is
considered to be correct if the normalized! total intensity of
muscular contraction of extensor (flexor) muscles exceeds
the intensity of antagonists, in a extension (flexion) task
by a specified threshold. In other words, stiffness or other
non-physiological muscular patterns are discriminated from
physiological activation patterns, and this discrimination is
quantified by the output of the processing pipeline.

Only when both conditions happen simultaneously (in-
volvement of motor cortex, and physiological muscular pat-
tern) at the right time (within the “trial””), the fusion module
consents the activation of the FES, which in turn constitutes
a positive reward for the patient.

IV. CONCLUSIONS

As previously shown [4], a motor imagery-based BCI
training is suitable to induce post-training cortical plasticity
as revealed by an increased motor evoked potentials recorded
from hand muscles after stimulation of cortical motor areas

! Absolute intensity of EMG intensity depends on muscle size, inter-
electrode distance, and other factors. The intensity during maximal voluntary
contraction is utilized as a normalization factor

with Transcranial Magnetic Stimulation (TMS). The BCI-
based rehabilitation tool described in Section II is currently
installed in the ward of a rehabilitation hospital and allows
stroke patients to perform daily sessions in which they
practice MI of simple movements of their paralyzed hand,
by controlling a visual representation of their own hands.
Both clinical and neurophysiological assessment of the first
8 stroke patients who underwent a one-month BClI-training
with this system revealed encouraging results (compared to
an equal sized control group) for the future introduction
of the BCI technology-assisted intervention in large scale
clinical programs for stroke rehabilitation. To our knowledge
this is the first randomized controlled trial carried out to
evaluate the efficacy of the mental training of motor skills
(motor imagery, MI) supported by an EEG-based BCI device
to promote recovery of hand function after stroke.

In the hybrid version of the BCI-based rehabilitation de-
vice, the screen on the desk is removed and patient eventually
observes his/her own hand move thanks to FES-orthosis
controlled by the hybrid-BCI. By leveraging both cognitive
functions and the residual motor ability of the patient, this
device provides for a comprehensive support to rehabilitation
of upper limb.

ACKNOWLEDGMENT

The authors thank Mr. Marco Secci for his essential
support in the experimentation with patients.

REFERENCES

[1] J.J. Daly and J. R. Wolpaw, “Brain-computer interfaces in neurological
rehabilitation,” Lancet Neurology, vol. 7, no. 11, pp. 10321043, Nov.
2008, PMID: 18835541.

[2] P. Langhorne, F. Coupar, and A. Pollock, “Motor recovery after stroke:
a systematic review.” Lancet Neurol, vol. 8, no. 8, pp. 741-754, Aug
2009.

[3] M. A. Dimyan and L. G. Cohen, “Neuroplasticity in the context of
motor rehabilitation after stroke,” Nat Rev Neurol, vol. 7, no. 2, pp.
76-85, Feb 2011.

[4] F. Pichiorri, F. De Vico Fallani, F. Cincotti, F. Babiloni, M. Molinari,
S. C. Kleih, C. Neuper, A. Kiibler, and D. Mattia, “Sensorimotor
rhythm-based brain-computer interface training: the impact on motor
cortical responsiveness,” J Neural Eng, vol. 8, no. 2, pp. 025020—
025020, Apr 2011.

[5] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R.
Wolpaw, “Bci2000: a general-purpose brain-computer interface (bci)
system.” IEEE Trans Biomed Eng, vol. 51, no. 6, pp. 1034-1043, Jun
2004.

[6] G. R. Mueller-Putz, C. Breitwieser, F. Cincotti, R. Leeb, M. Schreuder,
F. Leotta, M. Tavella, L. Bianchi, A. Kreilinger, A. Ramsay, M. Rohm,
M. Sagebaum, L. Tonin, C. Neuper, and J. del R. Millan, “Tools for
brain-computer interaction: a general concept for a hybrid bci (hbci),”
Frontiers in Neuroinformatics, vol. 5, no. 30, 2011.

4115



	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

