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Abstract² Here we demonstrate how a marmoset monkey 

can use a reinforcement learning (RL) Brain-Machine Interface 

(BMI) to effectively control the movements of a robot arm for a 

reaching task. In this work, an actor-critic RL algorithm used 

neural ensemble DFWLYLW\� LQ� WKH� PRQNH\¶V� PRWRU� FRUWH[� WR 

control the robot movements during a two-target decision task. 

This novel approach to decoding offers unique advantages for 

BMI control applications. Compared to supervised learning 

decoding methods, the actor-critic RL algorithm does not 

require an explicit set of training data to create a static control 

model, but rather it incrementally adapts the model parameters 

according to its current performance, in this case requiring 

only a very basic feedback signal. We show how this algorithm 

achieved high performance when mapping WKH�PRQNH\¶V�QHXUDO�

states (94%) to robot actions, and only needed to experience a 

few trials before obtaining accurate real-time control of the 

robot arm. Since RL methods responsively adapt and adjust 

their parameters, they can provide a method to create BMIs 

that are robust against perturbations caused by changes in 

either the neural input space or the output actions they 

generate under different task requirements or goals. 

I. INTRODUCTION 

Brain-Machine Interfaces (BMIs) are computer systems 
that allow a user to control a device¶V actions directly from 
their neural activity. Such systems have shown great potential 
to restore motor function to people living with amputation 
and paralysis. Numerous tests in animal models, as well as 
some human tests, have already shown the feasibility of using 
BMIs to control a wide range of devices including: 
communication systems, computer cursors, robot arms, and 
functional electrical stimulation systems [1-8]. 

The push to move these demonstrations beyond proof-of-
concept is motivated by the need to use them during activities 
of daily living to provide greater independence for persons 
living with paralysis or amputation. Such a change in 
deployment introduces new challenges to BMI design. To 
date, most BMI tests share a reliance on supervised learning 
methods (Wiener filters, neural networks, generative models, 
etc.) to create the BMI control module. In supervised 
learning, an explicit set of training data is used to directly 
map the system inputs onto the outputs to create the model, 
which than remains constant unless explicitly updated using a 
modified set of training data. For example, BMI tests that 
involve healthy nonhuman primates often involve a training 
phase in which the animal achieves the goal of the BMI task 
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directly with actual arm movements [2, 6-8], this data is then 
used to relate the task outputs (e.g. cursor or robotic 
movements) to the neural modulation. Even in cases where 
real arm movements are not explicitly used during the 
training, a paradigm must be employed in which the desired 
output from the BMI is carefully controlled so it can be 
related in some way to the inputs [1, 4]. After the training 
mode, the algorithm is then µIUR]HQ¶, and then used to allow 
neural modulations to drive the task directly in a true BMI 
mode. Since the BMI algorithm parameters have been fixed, 
changes for improving or modifying the performance of the 
system are only accomplished by the brain adapting its neural 
activity to better work with the computer [6]. By using such 
fixed control algorithms, the BMIs become sensitive to 
perturbations in either the inputs (e.g. neurons appearing or 
disappearing from the neural recordings), new environments, 
or in changes in the output (e.g. cursor movements 
unrepresented in the training data becoming desired). This 
can limit the long-term efficacy of the BMI, and requires the 
BMI to be regularly updated through additional training 
sessions, which reduces user independence. 

Reinforcement learning (RL) is a method of machine 
learning that is modeled after biological mechanisms and 
which does not rely on training data. In RL, the system 
adapts itself through experience and its interactions with the 
environment [9]. 6LQFH�%0,¶V�EDVHG�RQ�5/�[10, 11] can µVWDUW�
IURP�VFUDWFK¶�with no prior knowledge of the desired inputs 
and outputs, and then iteratively refine the model parameters, 
they would be a natural fit for real BMI applications in which 
the user was unable to manually drive the system to provide 
training data. Furthermore, since in RL the model weights 
can be continually refined and updated, such algorithms may 
be more effective than supervised methods in providing 
BMIs that are robust to changes in the input, output or 
environmental spaces. 

II. METHODOLOGY 

A. Neural Recordings 

Neural data was acquired from the motor cortex and 
nucleus accumbens (NAcc) of a single marmoset (Callithrix 
jacchus) monkey. Multielectrode arrays (16-channel tungsten 
microelectrode arrays, Tucker Davis Technologies, FL) were 
surgically implanted in each brain region under isoflurane 
anesthesia and sterile conditions. Neural data was acquired 
using a Tucker Davis Technologies RZ2 system at 24,414Hz. 
Neuronal signals were discriminated in real-time based on the 
waveform amplitudes and shapes and using manually set 
threshold levels. Both multiunit signals as well as well-
isolated single unit signals (collectively referred to here as 
neuronal signals) were recorded and used equivalently in all 
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equations after each trial (ten times following each new trial). 
Finally, the neuronal firing rates were normalized (-1 to 1) 
before being used as inputs. This was accomplished by 
keeping a real time record of the highest firing rate detected 
for each input, which was used to continually update the 
normalization parameters throughout the session. 

III. RESULTS 

A.  Electrophysiology 

The monkey quickly learned to control the robot arm. In 
sessions where the monkey controlled the robot manually, the 
monkey typically performed 50-60 trials (mean accuracy of 
90% for the first 50 trials, 8 manual sessions) before 
beginning to lose motivation. The task was quite effective in 
teaching the monkey consistently evoke different motor 
states. Fig. 3 shows an example histogram of the neuronal 
signals from one electrode when the monkey was controlling 
the robot arm either manually (top panel) or via the BMI 
(bottom panel). Time zero corresponds to the trial go cue. In 
A trials an upregulation in firing is obvious after the cue, 
while in B trials firing levels were maintained.  

 

Figure 3. The monkey associated two basic motor states with 
the behavioral task. Histograms from a single electrode when 
the monkey was manually controlling the robot arm (top) and 
when the arm was driven by the BMI (bottom) show the 
similarity in response under both conditions.  Black is 
response during A trials, red during B trials. 

B. Reinforcement Learning BMI Performance 

Fig. �� VKRZV� WKH�PRQNH\¶V�SHUIRUPDQFH�GXULQg a single 
session in which it used the actor-critic RL BMI to control 
the robot arm. The model weights were initialized randomly 
from a uniform distribution (-0.075 to 0.075). For a brief 
initial period, the monkey was unable to effectively control 
the arm, but the RL algorithm was able to converge to 
consecutive correct responses within 5 trials, and remained 
effective until the monkey was no longer interested in the 
task. Overall throughout the session the robot moved 
correctly to the cued target in 85% of the trials. Furthermore, 
in most cases where the robot moved to the incorrect target, 

this action was attributed to the monkey producing the 
incorrect motor state. For example, during almost all BMI A 
trials the monkey still made arm movements (despite those 
not being directly necessary to control the robot), this 
included trials 1 and 3. The incorrect robot movements 
during those trials thus indicated the RL algorithm was still 
learning an effective set of weight parameters. Conversely, in 
A trials 18, 27, 42, and 43 (highlighted in Fig. 4), the monkey 
did not move his arm and the RL algorithm moved the robot 
to the B (nonmove) target. Similarly, in trial 23 (B trial), 
while the monkey did not make an overt reaching movement 
he did move around in the chair, and the RL BMI moved the 
robot to the A target. This suggests that the model correctly 
interpreted the PRQNH\¶V�motor neural state in 94% of the 
trials, and most incorrect robot movements resulted from the 
monkey generating the wrong command signal during lapses 
in its interest with the task. 

Fig. 5 shows the iterative adaptation of the output node 
weights throughout the task. The algorithm continually 
changed the weights, although the values begin to plateau 
after sufficient trials of high performance, with perturbations 
occurring during trials where the monkey did not correctly 
participate in the task (e.g. trials 23, 27), which caused the 
model to readjust itself. 

Figure 4. Real time BMI performance. +1 indicates the robot 
moved to the correct target. The RL algorithm began 
effectively moving the robot to the correct target after only a 
few trials. Highlighted trials indicate erroneous robot 
movements that resulted from the monkey not participating in 
the task correctly.  

 

Figure 5. Output layer weight tracks (12 tracks: 5 hidden 
nodes, 2 output nodes, and 2 offset terms) for the same data 
pictured in Fig. 4 (vertical lines show Fig. 4¶V highlighted 
trials). The adaptation of the algorithm output weights from 
random initial conditions over time is evident. The adaptation 
of the hidden layer weights (not shown) followed a very 
similar pattern. 
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IV. DISCUSSION 

This robot control task demonstrates how reinforcement 
learning methods can be used as a BMI controller. The 
algorithm was able to quickly (less than 5 trials) and 
effectively modify its weights to allow a marmoset monkey 
to use the BMI to control a robotic arm. Furthermore, the 
algorithm continued to update the weights as new data was 
acquired. These updates simply refined the weights without 
hurting performance so long as the input space remained 
consistent. The refinement did not cause the RL method to 
become inflexible to new data. Trials in which the monkey 
did not attempt to generate the correct control signal caused 
immediate changes in the weight values, although with little 
effect on the overall (already good) performance. This is 
promising as it suggests the algorithm can rapidly respond to 
changes to the input space and quickly make updates, but can 
treat such deviations as outliers if doing so maintains overall 
performance. Intrinsic in this approach is a balance between 
computational learning and generalization. 

A limited amount of epoching of previous trial data was 
used in this experiment to speed the initial acquisition of 
effective weights. For BMIs, this is an underutilized approach 
that can expedite the acquisition of control solutions. In 
addition, it has a biological analogue of replay that is used 
during sleep. From a practical perspective though, it may be 
undesirable to indefinitely store and replay previous data, and 
sliding windows may need to be used during long term use. 
These windows may also affect the DOJRULWKP¶V� ability to 
rapidly respond to changes in the input space, or to 
significantly change action values related to a previously 
useful action that was no longer desired (or conversely 
change the weights related to an action that previously been 
used only sporadically but had suddenly become more 
useful). Thus, deeper investigation of epoching could yield 
insight into the balance of how previous and recent data 
affects updates and action selections. 

Finally, the only data needed to continually train and 
update the algorithm (total of 122 weight parameters) was a 
simple binary ³good/bad´ assessment of the effectiveness of 
the previous decision. While this information was input 
externally by the computer during this experiment, it is 
possible that it could be obtained directly from the brain 
itself. For example, Fig. 6 shows how during the manual 
control experiments a NAcc neuronal signal showed different 
modulation during A trials when the robot moved to the 
target LQVWUXFWHG�E\�WKH�PRQNH\��FRPSDUHG�WR�µFDWFK¶�WULDOV�in 
which the robot was suddenly moved to the B target despite 
the monkey having generated the correct A command (and 
thus was presumably disappointed by the robot moving to the 
unwanted wrong target). Such information could be used to 
provide the error feedback for the RL algorithm directly from 
the brain. RL methods can use such simple training signals to 
refine algorithms that in turn implement far more 
complicated tasks that involve many more degrees of 
freedom than the simple binary action choice employed here 
[14]. Thus, extracting such simple training data from the 
brain may enable the creation of adaptive BMI systems that 
continually refine themselves and thus remain robust against 
the perturbations and changes in the input space that can 
cause supervised learning algorithms to lose functionality. 

 

Figure 6. Example NAcc signal during A trials when the 
robot moved to the wrong target. In random catch trials the 
robot moved to the B target despite the monkey having 
generated the correct A command, resulting in no reward. 
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