
  

  

Abstract— Brain machine interfaces have the potential for 
restoring motor function not only in patients with amputations 
or lesions of efferent pathways in the spinal cord and 
peripheral nerves, but also patients with acquired brain lesions 
such as strokes and tumors. In these patients the most efficient 
components of cortical motor systems are not available for BMI 
control. Here we had the opportunity to investigate the 
possibility of utilizing subdural electrocorticographic (ECoG) 
signals to control natural reaching movements under these 
circumstances. In a subject with a left arm monoparesis 
following resection of a recurrent glioma, we found that ECoG 
signals recorded in remaining cortex were sufficient for 
decoding kinematics of natural reach movements of the non-
paretic arm, ipsilateral to the ECoG recordings. The 
relationship between the subject’s ECoG signals and reach 
trajectory in three dimensions, two of which were highly 
correlated, was captured with a computationally simple linear 
model (mean Pearson’s r in depth dimension = 0.68, in height = 
0.73, in lateral = 0.24). These results were attained with only a 
small subset of 7 temporal/spectral neural signal features. The 
small subset of neural features necessary to attain high 
decoding results show promise for a restorative BMI controlled 
solely by ipsilateral ECoG signals. 

I. INTRODUCTION 

The fast growing field of brain machine interfaces (BMI) 
provides the opportunity to both expand our working 
knowledge of the human nervous system and rehabilitate 
disabled persons. Electrocorticography (ECoG) is a 
promising source of feature-rich neural signals that provides 
a compromise between the highly invasive and non-
stationary spike recordings from microelectrode arrays and 
the low bandwidth recordings from electroencephalography 
(EEG) [1]. ECoG electrode grids and strips are clinically 
used for localizing the seizure focus in patients with 
intractable epilepsy. While patients wait to have a seizure 
recorded to plan resective surgery, researchers are afforded 
the opportunity to recruit volunteers for experimental tasks 
in which the subject’s behavior and neural signals are 
monitored simultaneously. Previous work has shown ECoG 
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signals from humans can be used to successfully decode 
two-dimensional cursor control [2] or arm trajectory [3, 4]. 
In this way patients undergoing ECoG recordings can help 
test BMI systems being developed for patients with motor 
impairments from a variety of causes. 

Prior BMI studies have focused primarily on decoding 
limb movements contralateral to the motor areas from which 
ECoG electrodes are recorded [5-10]. This approach is 
aimed at restoring upper limb function in amputees and 
patients with lesions of the spinal cord and peripheral 
nerves. In this case, the best approach is assumed to consist 
of an interface with upper limb representations in M1 and 
nearby premotor cortices. However, when designing a BMI 
for patients with motor impairments due to brain lesions, as 
in stroke, trauma, or brain tumors, these cortical motor 
systems may not be available. Such a BMI might instead 
rely on motor signals from ipsilateral motor cortex. It has 
been shown that hemiparetic subjects with unilateral lesions 
have significant deficits in the movement and muscle 
activity of the ipsilateral wrist [11]. It has been conjectured 
that this is due to the interruption in the pathway of the 
ipsilateral corticospinal motor projections. This raises the 
possibility of cortical representations for ipsilateral limb 
movements that could be activated and recorded by ECoG.  

 Another rationale for testing the viability of ECoG for 
ipsilateral limb control is that amputees cannot train a BMI 
using contralateral arm movements. One possible solution 
for these patients is to train the decoding algorithms using 
ECoG signals generated during movements of the intact 
ipsilateral arm, and then transition to control of the 
contralateral prosthetic arm by mirroring the movements of 
the ipsilateral arm. While this may be counterintuitive for 
the subject at first, it might help minimize the amount of 
necessary operant conditioning. 

It has been shown previously that two-dimensional hand 
position can be decoded ipsilaterally using ECoG [12, 13]. 
However, it remains to be investigated whether or not 
natural, unconstrained three-dimensional ipsilateral hand 
trajectory can be decoded from ECoG signals in humans. 
Here we investigated this question in a subject with 
contralateral arm weakness performing blocks of a discrete 
reaching task with their ipsilateral arm. 

II. METHODS 

A. Recordings 

The volunteer for this study was a 36 year old right 
handed man with medically refractory epilepsy associated 
with a low-grade oligodendroglioma in the right frontal lobe. 
He had already undergone 4 previous resections of the 
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tumor, but he was still having frequent secondarily 
generalized seizures beginning in the left hand, followed by 
Todd's paresis of the left arm and leg. Simultaneous with 
surgical implantation of subdural electrodes to guide 
epilepsy surgery, a nodule of recurring tumor was resected 
from the posterior lip of the previous resection cavity, at the 
anterior border of the precentral gyrus near the anatomically 
defined hand knob. During the subsequent week of 
intracranial monitoring, the patient's left arm was paretic, 
especially in distal limb muscles. The subject was recruited 
for this study because his intracranial electrodes had been 
placed over hand and arm areas of motor cortex. His 
electrode placement had been determined solely by clinical 
needs. The ECoG studies performed with this subject had 
been approved of by the Johns Hopkins International 
Review Board.  

 ECoG recordings from a total of 47 platinum subdural 
electrodes (Adtech Medical Instrument Corp., Racine, WI), 
referenced to a single subdural electrode, were used in our 
offline analysis. Electrode placement is seen in Figure 1. 
Electrodes were 4 mm in diameter with 10 mm inter-
electrode spacing. Signal acquisition was performed by a 64-
channel Neuroscan Synamps

2
 (Compumedics, Charlotte, 

NC). The electrodes were implanted in the right hemisphere, 
ipsilateral to the patient’s right (dominant) hand, which was 
used for the reaching task. The ECoG signals were bandpass 
filtered with cutoff frequencies at 0.15 Hz and 200 Hz, then 
sampled at 1000 Hz.  

The subject’s hand and shoulder position were optically 
tracked using the Optotrak system (Northern Digital, Inc.; 
Ontario, Canada) with a sampling frequency of 100 Hz. 
Tracking was done in height, depth, and lateral axes, which 
corresponded to the arm moving up or down, forward or 
backward, and left or right respectively. All recording was 
done within the system outlined in [14]. The arm position 
was synchronized with the neural data using parallel port 
triggers sent through a split cable to Neuroscan’s trigger 
inputs and the Optotrak Data Acquisition Unit. 

B. Experimental Paradigm 

The subject made discrete natural reaches in three 
dimensional space to touch the tip of a wooden dowel being 
moved by the experimenter. The target location was 
determined by the experimenter in order to fully probe the 

three-dimensional workspace. Reaches with the contralateral 
arm were not performed because it was too weak to perform 
the task. The subject performed each reach by pinching or 
touching the dowel tip with his ipsilateral index finger, then 
returning his hand to a comfortable resting position in his 
lap. The subject’s hand remained in the resting position for 
1.7-6.6 seconds, as the target was moved to another point in 
three dimensional space signaling the next reach to begin. 
The only cue for onset of the next reach was cessation of 
movement of the target to each new location. This was done 
to avoid confounding variables such as audio cues and to 
keep the reach dynamics as natural as possible. The dowel 
was always placed in front of and above the hand’s resting 
position. The cue was presented on both the left and right 
side of the subject. Data analysis included 2 blocks of 20 and 
22 trials, lasting for 164 and 163 seconds, respectively. 
These blocks were performed as part of an array of tasks 
lasting a few hours.  

C. Feature Extraction 

The MATLAB (MathWorks, Natick, MA) Signal 
Analysis Toolbox was used for offline analysis of the ECoG 
recordings. After removing bad electrodes via visual 
inspection, we common average referenced (CAR) the data. 
The local motor potential (LMP) was computed by applying 
a 2-second moving average filter both forward and backward 
to remove any group delay. Previous studies have indicated 
that this smoothed time domain feature contains movement-
related information [2, 15, 16]. 

To obtain movement-related ECoG signal features in the 
spectral domain, we used forward and backward filtering 
with 400-order bandpass FIR filters with Hamming windows 
to segregate the different frequency bands from the CAR 
filtered data without phase distortions. The cutoff 
frequencies corresponded to delta (0-4 Hz), mu (8-12 Hz), 
beta (12-30 Hz), low gamma (30-50 Hz), high gamma 1 (70-
110 Hz) and high gamma 2 (130-200 Hz) bands. The 
resulting signals were squared to yield band-specific power 
estimates. It has been previously shown that changes in the 
power of ECoG signals in both low and high frequency 
bands are associated with cortical processing during visual-
motor tasks [17, 18]. We smoothed this data using a 2-
second moving average forward and backward to remove 
noise. The beginning and end of each block was truncated to 
remove filter transients and the data was log-transformed to 
normalize the distribution. 

D. Decoding Framework 

Five-fold cross validation was used to validate our 
decoding model. Approximately 131 seconds of data was 
used in the training sets. Both ECoG signal features and 
kinematic data were normalized by subtracting their means 
and dividing by three standard deviations based on the 
training data. The means and standard deviations were 
recomputed during every fold of cross-validation. This 
normalization was done to ensure the magnitude of the 
features did not impact how heavily they were weighted in 
the decoding models.  

ECoG signals from each of the 47 recording channels 
were decomposed into 7 different spectral/temporal features, 
leading to 329 features. This high dimensional data set 

 
Figure 1. Reconstruction depicting the locations of the 47 

electrodes used for analysis  
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caused overfitting with our time-limited data set, so it was 
necessary to select a subset of the features. This selection 
was done every fold by finding the features with the highest 
raw correlations to the subject’s hand trajectory across 
multiple time lags in the training set. We looked at the 
correlations for the features at time lags varying between -
100 and 100 ms with respect to the kinematics at 5 ms 
intervals. We did not consider the same feature at multiple 
time lags as inputs to the model, though the model could 
include multiple feature types from the same electrode.  

Each of the outputs was modeled as a linear combination 
of the input features with a constant offset and a Gaussian 
noise term: 

����� � ��	� 
������� 
 � 

where ����� denotes the predicted output of the k
th

 
dimension of the kinematic output at time t, ���� is the 
vector of feature values at time �, �� is the linear weight 
associated with each neural feature, �	� is the offset, and  is 
zero-mean Gaussian noise. These parameters were 
calculated using the glmfit function in MATLAB which 
follows the formula:  

�� �� ��
��������� 

Model weights were recalculated for the features selected 
from the training set during each fold of the cross-validation. 

III. RESULTS 

Sample performance of the model using one to forty input 

features is shown in Figure 2Figure . Performance is 

qualitatively high with one feature input (r > 0.4 for depth 

and height). Increasing the number of features appears to 

provide a small increase in performance until around 7 

features, when saturation occurs. 

The addition of features does not result in a monotonic 

increase in performance, possibly due to extraneous features 

being fitted by the model to aspects of the training dataset 

that do not generalize well. We report results using 7 

temporal/spectral neural signal features as model inputs, 

since this was the minimal set that confidently provided 

saturation for each dimension. 

Figure 3 shows a sample of the actual and decoded 
kinematics. The depth and height axes are tracked fairly 
well, but the lateral axis had much poorer performance. The 
depth and height axis had very similar performance, 
probably resulting from the high degree of correlation 
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Figure 3. Sample of actual (blue) vs. predicted (red) kinematics. 

Position was normalized by subtracting the mean and dividing by 

three standard deviations based on the training dataset. 

 
Figure 2. Correlation (Pearson’s r) of predicted and actual arm trajectory as a function of input features used. Each point corresponds to the 

mean of 5-folds across 2 sessions of data, and each bar represents the standard error of the mean. 

Figure. 4.  Correlation (Pearson’s r) for each dimension. Chance 

decoding is the mean accuracy of 1024 models based on shuffled 

neural data with a bar corresponding to 3 standard deviations. 
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between the two kinematic traces. 

The overall decoding performance of the linear model is 
shown in Figure 4. This shows that while the lateral 
decoding is substantially lower than depth or height, it is still 
significantly above chance levels. The chance decoding 
results were found by randomly permuting the neural data 
and doing feature selection, training, and testing using this 
randomly shuffled data. This was repeated 1024 times for 
both sessions. 

IV. DISCUSSION 

We have shown that it is possible to predict natural 
reaching movements in three dimensional space with 
accuracy significantly higher than chance. This was done 
using less than three minutes of ECoG data from the 
ipsilateral cortex of a subject with contralateral arm 
weakness from a unilateral cortical lesion. Further, we have 
shown that a simple linear model is sufficient for capturing a 
significant portion of the relationship between the neural 
signals and unidirectional hand position. This was 
accomplished with a model using only 7 temporal/spectral 
neural signal features as inputs.  

Our model was able to attain high accuracies in the depth 
and height axes. The markedly lower performance in the 
lateral axis can most likely be explained by the fact that 
there were bidirectional deflections relative to the rest 
position of the hand. A possible resolution for this would be 
to create a classifier for predicting movement direction while 
the linear regressor predicts movement magnitude. It may be 
possible to accomplish this by looking at aspects of the 
neural data overlooked by our model, such as nonlinearities 
present in the signals. Alternatively, higher resolution neural 
recordings may be necessary for decoding bidirectional 
movement deflections from ipsilateral cortex. This might 
involve using ECoG grids with smaller inter-electrode 
distances or using microelectrode arrays for spike train 
and/or LFP analysis.  

The low number of neural features required is in 
agreement with previous work [16], which showed that 
saturation of performance occurs with a very small feature 
set. This indicates that a very small footprint would likely be 
necessary when implanting an ECoG grid for a brain 
machine interface to reach peak decoding performance. 

All our decoding was based on a limited area of precentral 
gyrus in a subject where most of the premotor cortex 
anterior to precentral gyrus had been resected. This 
successful decoding in the context of damage to important 
components of cortical motor systems, suggests a possible 
new avenue for rehabilitating victims of brain lesions. 
Sufficient decoding accuracy could potentially be obtained 
from electrodes placed on and around damaged cortex. This 
obviates the need to expose undamaged cortical areas to the 
risks of electrode implantation. In addition, electrode 
implantation could be done concurrently with experimental 
therapies (e.g. stem cells) for restoring neural populations 
and  enhancing functional reorganization. A potential 
obstacle for this strategy is that it won’t be possible to train 
any decoding algorithms if the patient can’t move their arm. 
However, one could bootstrap the process by first 
controlling ipsilateral arm movements, and then robotically 

animating or assisting the contralateral arm to mirror the 
movements of the ipsilateral limb under BMI controlled.  
Eventually the BMI could wean off ipsilateral arm control as 
contralateral arm control improves through functional 
reorganization and neural plasticity. 
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