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Abstract— We present a new system for the continuous
decoding of hand movement speed in three-dimensional (3D)
space from EEG signals. We recorded experimental data of five
subjects during mimicking the natural task of filling a glass of
water. The proposed system uses filter bank common spatial
patterns and linear regression to estimate the speed of hand
movements from artifact cleaned EEG signals. Average Pearson
correlations between the speed trajectories predicted from EEG
and the speed trajectories measured using a high-precision
motion tracking system are r=0.41 for the x-axis, r=0.36 for
the y-axis, r=0.48 for the z-axis, and r=0.17 for absolute speed
in 3D space.

I. INTRODUCTION

In the last years, Brain Computer Interfaces (BCIs) have
evolved into practical and useful applications for commu-
nication and control. In the near future, robotics devices,
such as intelligent assistants and advanced prostheses will
support healthy and severely movement-impaired people in
their daily lives. Our vision is to combine methods for
robot Programming by Demonstration (PbD) [1] and Brain
Computer Interfaces, we term this concept Programming
by Imagination (PbI). For example, this would be highly
relevant for future applications in the health care domain
as a method of teaching new skills to a (semi-autonomous)
assistance robot for amyotrophic lateral sclerosis and locked-
in patients. One crucial element for such a system is the
decoding of hand movement kinematics from brain activity.

BCIs usually follow a pattern recognition approach to dis-
criminate between a set of well studied discrete types of neu-
ral activations that can be classified with high accuracy using
machine learning methods. However, such BCIs can only
recognize a small set of predefined classes, such as different
types of motor rhythms (e.g. discriminating motor imagery
of left hand from right hand) or event related potentials
(e.g. detecting P300 event related potentials). Historically,
the application of EEG for BCIs is considered to be limited
to such classification tasks because of its noise sensitivity
and low spatial resolution. However, recent advances in the
field of neuroengineering enabled EEG based BCIs that
can continuously derive information about complex human
behavior. Besides invasive approaches (e.g. [2], [3]), only
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Fig. 1. A subject wearing EEG cap and sensor gloves during the
experiment. The directions of the coordinate axes are illustrated.

very few research has challenged to decode hand movement
kinematics from non-invasive EEG signals:

Yuan et al. [4], [5] decoded the speed of executed and
imagined hand clenching of different speeds. They found cor-
relations between EEG activity in the alpha, beta, and gamma
frequency bands and the speed of clenching. To decode speed
from EEG signals, they developed a linear model based on
time-frequency features. They compared the predicted speed
trajectories of executed and imagined clenching with a bell-
shaped profile as a reference signal. The average correlation
coefficient between the reference profile and their decoding
results was r=0.32. For the prediction of the active hand
(left versus right) they achieved an average classification
accuracy of 74 %. Bradberry et al. [6] continuously decoded
hand movement speed from EEG signals collected from
five subjects during a 3D center-out reaching task. They
applied separate linear decoding models for hand speed in
the three Cartesian axes. Using 34 out of 55 electrodes
they achieved average Pearson correlations r=0.19, r=0.38,
and r=0.32 between the measured and the predicted hand
movement speed in the x, y, and z axes, respectively. Lv et
al. [7] used a drawing task and reconstructed the speed of
hand movements of five subjects from EEG signals. They
used features from multiple frequency bands and applied
Kalman filtering and smoothing. Pearson correlation between
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the measured and the predicted speeds were r=0.37 for the
horizontal and r=0.24 for the vertical dimension. They found
that slow potentials (0.1-4 Hz) and oscillatory rhythms in
(24-28 Hz) carried most information of hand movement
speed.

The decoding of kinematics from EEG is still not suffi-
ciently researched, especially experiments with natural daily
life movements have not been investigated in the context
of BCIs before. In this paper, we present a new method
to decode the speed of hand movements from EEG signals
using the filter bank common spatial patterns (FBCSP)
algorithm to automatically select predictive frequency bands
and spatial filters, which has not been applied to the decoding
of movement kinematics before. We apply a strict artifact re-
moval procedure based on EOG regression and Independent
Component Analysis. For the evaluation of our system we
recorded data from subjects filling water into a glass (see
Figure 1), which is a more natural and complex movement
task than those analyzed in previous studies.

II. METHODS

A. Experiments and Recording Setup

Five healthy, right-handed male subjects participated vol-
untarily in the experiment (ages 26-29 years). Their average
score in the Edinburgh handedness scale was 78. None of
them was trained to use BCIs.

Each subject performed 50 trials of the natural movement
of filling water into a glass, while synchronized EEG, EOG,
and hand position tracking were recorded. Figure 1 illustrates
the task setup: An empty bottle and a glass were located
approximately 30 cm from each other on a table. During
the whole experiment the subjects were holding the glass
in the left hand and the bottle in the right hand. Each trial
was preceded by a 0.8-3.5 seconds resting period. After that,
subjects used their right hand to lift, move and turn the bottle
in order to mimic filling water into the glass, waited for a
short while, and put the bottle back to its original position.
Trials and preceding resting periods were labeled manually
during the experiment. Each trial took about 5 seconds. After
the experiment, all motion trajectories have been visually
screened and 15 % of the trials have been excluded from
further analyzes because of incorrectly labeled trajectories.

EEG, as well as horizontal and vertical EOG, were
recorded using a 32 channels active electrode system
(actiChamp, BrainProducts) at 1 kHz sampling rate. Hand
positions in 3D space were tracked using a Flock of Birds
motion tracking system (Ascension Technology) at 30 Hz
sampling rate. The tracking system uses a DC magnetic field
to locate the position of the sensor gloves the subject is
wearing. It has a very high precision and in comparison to
visual tracking systems, there are no problems with occlusion
of markers, which makes the method suitable for complex
tracking tasks.

B. Artifact Removal

Artifact removal is absolutely crucial for the processing of
the data of this experiment. To record high quality signals

that contain only small motion artifacts, we used an active
electrode system. Most non-brain influences on the EEG
signals come from eye movements, muscle activity (mainly
arm and neck), as well as humming induced by the magnetic
field of the motion tracking system. The influence of the
magnetic tracker can be identified as a strong, sharp peak
in the spectrum at 34 Hz, and higher frequency harmonics.
We removed these disturbances by low-pass filtering the
data at 30 Hz using FFT based filtering. For the reduction
of eye activity artifacts we applied EOG correction based
on linear regression [8] using horizontal and vertical EOG
recordings of the left eye. We computed the Independent
Component Analysis (ICA) based on the extended Infomax
algorithm (runica [9]) to transform the EEG signals into
ICA space. All ICA components were carefully checked
for characteristic artifact properties of their time domain
signals, scalp topographies, and power spectral densities. To
identify artifact components, we applied a similar approach
as described in Lv et al. [7] and applied criteria from [10],
[11], [12], such as spectral power bursts in frequencies
above 20 Hz indicating muscle activity, or low frequency
frontal activity caused by eye movement artifacts. All ICA
components containing artifact activity were removed during
the inverse ICA transformation back into the original EEG
electrode space by setting their contribution in the inverse
transformation matrix to zero (see [9] for details). We
decided for a strongly restrictive artifact removal procedure,
i.e. 16-22 of 31 ICA components have been removed from
the recordings of the different subjects. We also removed
some mixed components consisting of brain activity and
artifacts to ensure that only clean brain activity signal parts
are used. The absolute correlation coefficients between all
remaining ICA components and horizontal as well as vertical
EOG channels, were checked to be smaller than r=0.05.

C. Hand Speed Decoding from EEG

After artifact removal, independent linear regression mod-
els were trained and evaluated for the x, y, and z axes, as
well as absolute hand movement speed.

Frequency filtering and spatial filtering are important pre-
processing steps for BCI applications to reduce volume
conduction effects and emphasize activity in relevant brain
areas. Therefore, we applied the multiclass filter bank com-
mon spatial patterns (FBCSP) algorithm [13], [14], which
we applied to the prediction of continuous outputs instead
of multiclass classification as originally proposed. FBCSP
is one of the most effective BCI methods and was the
winning approach for multiple tasks in BCI Competition
IV [15]. For the training of FBCSP, we split the recorded
EEG data into three classes: hand movements in positive
axis direction, hand movements in negative axis direction,
and no hand movements. A speed threshold of 1.5 cm

sec was
used to determine the classes. Then, we applied a filter
bank of 4 Hz wide bandpass filters between 1 and 28 Hz
(1-4 Hz, 4-8 Hz, 8-12 Hz, 12-16 Hz, 16-20 Hz, 20-24
Hz, and 24-28 Hz). From the frequency filtered data, we
calculated common spatial patterns [16] using a 1-vs-rest
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Fig. 2. Trial images showing all speed trajectories of subject 2. Each row in each image corresponds to one trial. The average trajectory is plotted below
each image. Top: Trajectories of right hand speed measured by the motion tracking system in the x-axis (vx), y-axis (vy), z-axis (vz), and absolute speed
(vabs). Bottom: Hand movement speed trajectories predicted from EEG signals. Trials are scaled to equal length and speed trajectories are z-normalized.

multiclass scheme [14]. The two most discriminative spatial
filters for each of the three classes (first and second columns
of the CSP transformation matrix) were then applied to
transform the training data (see e.g. [14] for details). From
the transformed data, logarithmic variance features were
calculated. We selected the spatial filters that had the highest
mutual information between their calculated features and the
hand movement speed measured by the motion tracker using
kernel estimation based mutual information feature selection
(MIBIF algorithm [13]). Considering the distribution of the
calculated mutual information values, we decided to select
d = 10 of the 42 generated spatial filters (7 frequency bands
x 2 filters x 3 classes) for the experiments in this paper.

After frequency and spatial filtering, logarithmic variance
features were calculated sample-wise using a sliding window
of 1 second length, which appeared to result in a reasonable
smoothing without loosing too much temporal resolution.

Continuous speed estimates v̂t at sample number t were
decoded from the EEG features using linear regression.
Before training the regression models, EEG features were
downsampled to 100 Hz, which enables the regression model
to capture a larger time interval with a small model order
and reduces computational cost. We modeled the relationship
between the calculated EEG features (independent variables
f1,t, ..., fd,t) and the hand movement speed measured by the
motion tracking system (dependent variable vt) using a 1st
order multilinear regression model: v̂t = β0 +

∑d
i=1 βifi,t.

The model coefficients βj were estimated using the least

squares criterion.
In a final post-processing step the decoded hand speed

trajectories were smoothed by low-pass filtering at 1 Hz.

III. RESULTS
To evaluate the system performance, we applied a 10 fold

cross-validation. In each of its iterations, all parameters for
hand speed decoding (i.e. CSP filters and regression model
coefficients) were learned from the training data and applied
to the evaluation data.

Pearson correlation coefficients were calculated between
the trajectories measured by the motion tracker and those
predicted by the EEG decoding system and were averaged
over all folds of the 10 fold cross-validation. Figure 3 shows
the Pearson correlation results of all three axes (vx, vy ,
vz), and of absolute hand speed (vabs =

√
v2x + v2y + v2z ).

The axial directions are illustrated in Figure 1. Correlation
coefficients averaged across all subjects are r=0.41, r=0.36,
r=0.48, and r=0.17, for the x, y, z axes, and absolute
speed, respectively. One-tailed t-tests of the correlations
against r 6=0 across the cross-validation folds are significant
(p < 0.01). The average variance of the correlations across
cross-validation folds is rather high (σ̄2 = 0.011), which can
be explained by poor performance of few cross-validation
folds, where the predicted hand speed trajectories are delayed
or nearly no speed change is detected by the decoder (for
example Figure 2 vz trials 10-15). Nearly all correlations of
the four conditions are significant in all 10 cross-validation
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folds (p < 0.0001). Paired t-tests show that vx, vy , and
vz have significantly larger correlation coefficients than vabs
(p < 0.01), which indicates that movement speed in the x, y,
and z axes appears to be easier to decode from brain activity
than absolute movement speed.

Fig. 3. Pearson correlation coefficients (CC) between speed trajectories
measured by the motion tracker and predictions from EEG. Axial directions
as in Figure 1.

Figure 2 shows the decoding performance of subject 2
in more detail. In Figure 2 top, the hand speed trajectories
measured by the motion tracker are illustrated. Speed tra-
jectories in the three axes and absolute speed are shown in
separate plots. Each image shows all trials of the experiment,
i.e. each row of an image corresponds to one trial of filling
water into the glass. The curve below each image shows the
speed trajectory averaged over all trials. Plots are scaled to
equal length and speed trajectories are standardized to zero
mean and unit standard deviation (z-normalized). Figure 2
bottom shows the corresponding speed trajectory predictions
from EEG data of the proposed decoding system as trial
images. Below each image, their averaged speed trajectories
are shown.

The artifact removal procedure is a very important pro-
cessing step, since systematic task dependent artifacts have
a strong influence on the system at most of the subjects.
Obmitting it, results in an absolute (relative) difference of
the average correlation coefficients ∆r = 0.16 (36%), ∆r =
0.14 (28%), ∆r = −0.05 (-8%), ∆r = −0.04 (-23%),
∆r = 0.12 (45%), for the five subjects respectively.

The FBCSP algorithm has the advantage that relevant
signal parts are identified automatically and no expert knowl-
edge is required to identify predictive electrode locations
and frequencies, which is an important property for potential
applications. The FBCSP algorithm most frequently selected
CSP filters in the frequency range of slow potentials (1-4
Hz) and high beta activity (24-28 Hz), i.e. these frequency
bands contain most mutual information between the EEG
features and the measured speed trajectories. This supports
the findings of Lv et al. [7], who also reported these
frequency ranges to carry most information of hand speed
in their experiments.

IV. DISCUSSION

In this paper, we showed that complex movement kine-
matics of natural motor actions, such as 3D hand movement
speed during filling a glass of water, can be decoded from
non-invasive EEG signals. In most of the trials, the shapes
of the predicted speed trajectories strongly resemble those
measured by the high-precision motion tracking system.
Positive and negative speed trajectory parts can clearly be
identified, which correspond, for example in the y-axis, to
hand movements towards the direction of the glass and back
again. The proposed decoding algorithm can be applied in
real-time for online applications.
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