
  

 

Abstract—A Kalman filter was used to decode hand 

trajectories from micro-electrocorticography recorded over 

motor cortex in human patients.  In two cases, signals were 

recorded during stereotyped tasks, and the trajectories were 

decoded offline, with maximum correlation coefficients between 

actual and predicted trajectories of 0.51 (x-direction position) 

and 0.54 (y-direction position).  In a third setting, a human 

patient with full neural control of a computer cursor acquired 

onscreen targets within 6.24 sec on average, with no algorithmic 

constraints on the output trajectory.  These practical results 

illustrate the potential utility of signals recorded at the cortical 

surface with high spatial resolution, demonstrating that surface 

potentials contain relevant and sufficient information to drive 

sophisticated brain-computer interface systems. 

 

I. INTRODUCTION 

Micro-electrocorticography (µEcoG) provides more 
spatial resolution than what is currently possible with 
electroencephalography (EEG) or standard 
electrocorticography (EcoG) grids [1].  Because the 
electrodes are smaller, they have different physical 
properties, such as higher electrical impedances, than 
standard ECoG recording electrodes.  These electrical 
properties require different amplification and signal analysis 
capabilities than those available with clinical EEG recording 
equipment [2].  µECoG can serve as a platform to 
chronically record local field potential signals from the 
surface of the neocortex which contain sufficient information 
to decode a relatively stereotyped movement [3]. One benefit 
of µEcoG grids is that they can be safely placed over 
eloquent cortex and used to decode complex movements 
such as speech [4]. These qualities of µEcoG grids make 
them well suited for implementing online decodes of 
continuous movements, which allows the patient to make use 
of visual feedback of performance during the task [5]. 

Here we present performance and analysis of the 
decoding of hand trajectories from local field potentials 
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recorded using µEcoG grids. In two patients the decoding 
was performed offline. These data exhibited above-chance 
performance despite the lack of visual feedback for online 
error correction.  In a third patient, decoding was performed 
online with closed-loop visual observation of performance. 
These data demonstrate the potential for real-time control via 
a µEcoG cortical interface.  All three datasets show that 
µECoG grids can serve as a platform for neural prosthetic 
applications. 

II. METHODS 

A. Subjects 

Three male patients requiring long-term 
electrocorticographic monitoring for medically refractory 
epilepsy were enrolled in an Institutional Review Board-
approved protocol.  Informed consent was obtained from 
each patient.  

Patient one (P1) was implanted with two 16-channel 
µECoG grids (40-micron wire) (PMT Corporation, 
Chanhassen, MN) with 1-mm interelectrode spacing, placed 
in the epipial space underneath a standard clinical ECoG grid 
(Fig. 1).  One of the arrays was placed over upper extremity 
primary motor cortex as confirmed with intraoperative 
somatosensory evoked potential (SSEP) monitoring.  The 
other array was placed more inferiorly along the precentral 
gyrus.  Both arrays were referenced to a pair of epidural bare 
wires. Patient two (P2) was implanted with a single 30-
channel µECoG grid with 2-mm interelectrode spacing.  The 
anterior portion of the array was placed over the hand area of 
primary motor cortex as confirmed using extraoperative 
electrical stimulation with electromyographic confirmation.  
The array was referenced to two low-impedance electrodes 
built into the device. Patient three (P3) was implanted with a 
single 64-channel µECoG grid (50-micron wire) (Ad-Tech 
Medical Instrument Corporation, Racine, WI) with 3-mm 
interelectrode spacing, placed over hand and arm sensory 
and motor cortex. The array was referenced to an EEG scalp 
electrode. 

B. Experimental Paradigm 

Patients P1 and P2 were instructed to perform simple, 
repetitive movements to move a computer mouse with arm 
and hand contralateral to the implanted electrodes.  On 
verbal cue, the patient moved the mouse from a starting 
position, at the bottom center of the tablet, to the upper left 
or the upper right corner, then returning to start position.  
The order of targets was determined beforehand to be 
interleaved pseudo-randomly and was communicated 
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through the verbal cue.  Trials lasted 2–3 seconds with a 1-
second separation. 

Patient P3 was instructed with a visual cue to move the 
cursor to one of two targets on each side of the monitor using 
a computer mouse. The sequence of target presentation was 
determined online by a pseudo-random algorithm. 

C. Data Analysis 

For P1 and P2, the tablet and array outputs were recorded 
with a NeuroPort system (Blackrock Microsystems, Salt 
Lake City, UT) at 2,000 samples/sec, or at 30,000 
samples/sec and downsampled to 2 kS/sec.  The data were 
also highpass filtered at 1 Hz to attenuate motion artifact.  A 
total of 14 sessions were used for P1, and nine sessions for 
P2.  Sessions were 117 ± 74 sec (P1) and 120 ± 61 sec (P2) 
in length. 

Multitapered spectrograms between 0 and 500 Hz were 
generated using the Chronux package.  The spectral data 
were averaged into frequency bins covering 0-5 Hz, 5-13 Hz, 
13-30 Hz, 30-80 Hz, 80-200 Hz, and 200-500 Hz.  All 
frequencies within ±5 Hz of 60 Hz or its harmonics were 
removed due to line noise contamination.  The movement 
data were downsampled to the same sampling rate as the 
spectrograms moving window rate (4 samples/sec).  An 
offset of 150 msec was introduced between the movement 
data and the spectral data to model delay between neural 
activity and motor output.  The final feature vector zk 
consisted of 6 frequency bins per channel and the hand state 
xk was represented by a six-dimensional vector comprising x 
and y position, velocity, and acceleration for k = 1, 2, … M, 
where M was the number of samples in the data set. 

A standard Kalman filter was implemented to perform 
the trajectory decode [6].  The likelihood model was defined 
as 

 zk = Hkxk + qk 

where Hk linearly relates the hand kinematics xk to the neural 
features zk, and qk represents noise in the observation, 
assumed to be zero-mean and normally distributed with 
covariance matrix Qk.  Next, the state transformation matrix, 
Ak, was defined to model how the system state, i.e., the hand 
kinematics, varied over time, with wk, a noise term, also 

assumed to be zero-mean and normally distributed with 
covariance matrix Wk. 

 xk+1 = Akxk + wk (2) 

Neural data recorded during two different task sessions 
were used for training and testing.  The parameters A, H, W, 
and Q were directly calculated from the training data as 
described in [6] and were assumed to be constant, e.g., Ak = 
A.  Additionally, the means of the movement and neural data 
features were calculated in order to center the data, and the 
data were orthogonalized using PCA, with tailing principal 
components contributing less than 1% of the variance 
discarded.  The principal components and means found 
during training were applied to the testing data to mimic 
realtime constraints. 

To determine the level of chance in the context of the 
continuous trajectory decode, the Kalman filter was trained 
and tested using zero-mean white noise in place of the neural 
data (but maintaining the kinematic data).  The level of 
chance was estimated as the average correlation across all 
combinations of training and testing sessions using this white 
noise.   

For P3, the Kalman filter was implemented in real-time. 
The decode was trained using one minute of data recorded 
during reaches to two horizontal targets randomly cued. 
During this training, 18 channels on the grid were used for 
the decode. These channels were chosen because the neural 
data from these channels demonstrated moderate correlations 
with arm movement.  For the selected channels, spectral data 
was averaged between 20-30 Hz. 100 ms time bins were 
used, with an offset of 200 msec between neural data and 
kinematics. The position of the cursor during online 
decoding was restricted within the space of the tablet and 
monitor, but no algorithmic constraints were applied to 
trajectory. 

III. RESULTS 

A. Decoding Arm Trajectories 

As an initial step to verify that there was some basis to 
the Kalman filtering approach, each task session was used as 
both the training and the test set.  The correlation between 
the Kalman filter’s predicted hand position and the actual 

 

Figure 1.  Implant pictures. (Left) Two 16-chan. µECoG arrays (1-mm spacing) were implanted over hand area (orange wire) and arm area (green 

wire) right primary motor cortex in P1. (Middle) A single 30-chan. array (2-mm spacing) was implanted over left primary motor cortex hand and 

arm area in P2. (Right) A 64-chan. array (3-mm spacing) was implanted over hand and arm sensory and motor cortex; only the base is visible. 
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position were calculated to evaluate performance.  With the 
same data used for both training and testing, the mean and 
standard deviation of the correlations for x- and y-position of 
P1 was 0.76 ± 0.18 and 0.78 ± 0.17 respectively; for P2 they 
were 0.76  ±0.16 and 0.73  ±0.14, respectively.  That the 
parameters A, H, W, and Q could be learned and then 
statically reapplied to the data implies that linear 
relationships persisted, at least on this short time scale, 
between hand kinematics and the neural data. 

Performance was lower (Fig. 2) when the Kalman filter 
was run on separate data for training and testing, although in 
most cases the performance was well above chance (Table 
1). To evaluate the performance of the Kalman filter, all 
possible pairs of task sessions were used as training and 
testing sets for each patient, under the constraint that the test 
set occurred subsequent to the training set.  With 14 task 
sessions for P1, there were 91 possible training and testing 
pairs; for P2, there were nine task sessions and 36 possible 
pairs.  The mean and standard deviation of x-position 
correlation across these pairings was 0.13 ± 0.10 for P1 (48 

of 91, or 52.7% above chance) and 0.19 ± 0.15 for P2 (27 of 
36, or 75.0% above chance).  For the y-position, correlations 
were 0.16 ± 0.12 for P1 (65 of 91, or 71.4% above chance) 
and 0.22 ± 0.19 for P2 (25 of 36, or 69.4% above chance).  
For P1, 11 of 91 combinations resulted in correlations above 
the level of chance for all six kinematic variables; 38 of 91 
combinations resulted in correlations above the level of 
chance for just the position variables.  For P2, 12 of 36 
combinations were above chance for all six kinematic 
variables, and 20 of 36 combinations were above the level of 
chance in both dimensions of position (Fig. 3). 

If the pairs were further constrained such that only 
consecutive task sessions were used for training and testing, 
the performance increased: x-position correlations were 0.17 
± 0.13 for P1 and 0.23 ± 0.18 for P2, and y-position 
correlations were 0.21  ±0.12 for P1 and 0.25 ± 0.20 for P2.  
Some pairs demonstrated much higher correlations.  The 
maximums for P1 were 0.39 and 0.49 for x- and y-position, 
respectively.  The maximums for P2 were 0.59 and 0.59, 
respectively. 

P3 controlled the movement of a cursor on the screen 
using the real-time Kalman filter, moving the cursor between 
targets based on visual cues for 21 minutes (Figure 4).  On 
average, P3 required 2.15 seconds to start moving in the 
direction of the target, and (in total) 6.24 seconds to acquire 
each target.  All presented targets were acquired. 

 

Figure 2.  Sample output of the Kalman filter for patients P1 and P2. In Panel A, the Kalman filter was trained on 113 seconds of data recorded during 

an experimental session with P1, then tested on 90 seconds of data recorded during a subsequent experimental session which began 226 seconds after 

the first session ended. In Panel B, the Kalman filter was trained on 55 seconds of data recorded during an experimental session with P2, then tested 

on 70 seconds of data recorded during a subsequent session which began 15 seconds after the first session ended. 

 

 

 

Figure 3.  Summary of performance of the Kalman filter for P1 and P2.  Panel A shows results for P1; Panel B shows results for P2.  Only combinations 

of experimental sessions in which testing sessions occurred after training sessions were used as training and testing pairs (thus the blank upper 

triangles), with the correlation between actual and predicted x and y positions shown in these images.  The color scale indicates the magnitude of the 

correlation between 0 and 1.  The diagonal indicates the performance when training and testing on the same data.   

 

 

TABLE I.  LEVEL OF CHANCE FOR ALL KINEMATIC VARIABLES, 
FOR EACH PATIENT. 

 x-pos y-pos x-vel y-vel x-acc y-acc 

P1 0.08 0.08 0.06 0.06 0.04 0.04 

P2 0.09 0.07 0.06 0.06 0.05 0.04 
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IV. DISCUSSION 

This study was designed to investigate whether a µECoG 
grid could serve as brain-computer interface (BCI) for a 
motor neural prosthesis.  The results described here 
demonstrate above-chance performance in an offline 
environment when decoding arm trajectories from 
microelectrodes resting over primary motor cortex.  
Furthermore, these results demonstrate that real-time control 
of a cursor on a computer screen is possible using surface 
local field potentials. 

It is likely that there is significant motor information 
represented at the scale of single cortical columns.  It is 
possible that a µECoG grid may be capable of acquiring 
local field potential signals at this scale from the surface of 
the cortex.  Extracting neural information at this spatial scale 
may be necessary to provide dexterous intuitive control of a 
prosthesis.  At one extreme, accurate control for fine 
movements of an external device might require wires with 
subcolumnar (less than 1000 micron) spacing.  Such a 
system could approach the scale and quality of local field 
potentials recorded with penetrating microelectrodes.  At 
another extreme, it is possible that nonpenetrating wires 
could only accurately measure an “ECoG-like” integrated 
signal from a broad region of cortex.  If the information 
content available at the pial surface is substantially spatially 
limited, perhaps to a range of several millimeters, then the 
best motor decode possible using a µECoG grid may not 
substantially differ from what is possible through a 
conventional ECoG grid or possibly epidural electrodes.    

This study demonstrated that continuous trajectory 
decodes are possible using cortical surface potentials 
recorded over motor cortex with dense grids of 
microelectrodes.  While continuous trajectories have been 
decoded previously using intracortical field potentials [7, 8], 
and macroscale surface potentials [8, 9], this is the first work 
to demonstrate the concept using surface local field 
potentials.  Significant work remains to improve the accuracy 
and performance of the trajectory decode.  Specifically, 
adaptive methods could be applied to a number of aspects of 
the decode process, for example, to update the means and 

principal components online, and to update the parameters 
A, H, W, and Q to reflect changing relationships in the 
neural data over time.  Furthermore, although the linear 
models used for this work were sufficient for demonstration, 
the true nature of the relationship between motor output and 
neural activity is likely to be nonlinear.  As these issues 
continue to be explored, the extended Kalman filter, which 
allows for nonlinear models, may become more appropriate. 

V. CONCLUSION 

The primary finding of this study is that brain activity 
recorded at a millimeter scale from the cortical surface 
supports motor-BCI applications. By providing high spatial 
resolution electrophysiological recordings of human 
neocortical activity, µECoG arrays may be able to serve as 
an interface that provides dexterous intuitive control of a 
limb prosthesis.  Additionally, this technology may serve as a 
novel research tool for studying spatially local neocortical 
phenomena in health and disease. 
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Figure 4.  X position of cursor on a computer monitor controlled by P3 

with the real-time Kalman filter. The blue line represents the x position in 

millimeters of the cursor as P3 was randomly cued to move to two targets 

(red circles) horizontally separated on the monitor. A single feature was 

used from 18 channels, consisting of the average power between 20 and 

30 Hz. The real-time Kalman filter was trained for 1 minute and was 

implemented with 100 ms time bins and a -200ms time lag. 
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