
  

  

Abstract—Typically, brain-machine interfaces that enable 

the control of a prosthetic arm work by decoding a subjects’ 

intended hand position or velocity and using a controller to 

move the arm accordingly. Researchers taking this approach 

often choose to decode the subjects’ desired arm state in the 

present moment, which causes the prosthetic arm to lag behind 

the state desired by the user, as the dynamics of the arm (and 

other control delays) constrain how quickly the controller can 

change the arm’s state. We tested the hypothesis that decoding 

the subjects’ intended future movements would mitigate this lag 

and improve BMI performance. Offline results show that 

predictions of future movement (≤≤≤≤ 200ms) can be made with 

essentially the same accuracy as predictions of present 

movement. Online results from one monkey show that 

performance increases as a function of the future prediction 

time lead, reaching optimum performance at a time lead equal 

to the delay inherent in the controlled system.  

I. INTRODUCTION 

rain-machine interfaces (BMI) record neural signals in 

real time, interpret them as motor commands, and 

reroute them to a device (e.g., a computer cursor or 

prosthetic arm) in order to restore the subject’s lost motor 

function. Typically, a BMI that enables the control of a 

prosthetic arm decodes an intended hand position or velocity 

from the subject and uses a controller to generate joint 

torques to drive the arm accordingly. Previous studies taking 

this approach have chosen to decode the subject’s desired 

arm state in the present moment and use it as the command 

signal [1,2]. This approach, however, causes the prosthetic 

arm to lag behind the state desired by the user, as the 

dynamics of the arm usually constrain how quickly the 

controller can bring the arm’s state in accordance with the 

commanded state. Furthermore, neural activity or the 

decoder output is sometimes smoothed in order to eliminate 

high frequency noise in the decoder output, which introduces 

additional delays in the control loop. Generally, no attempt 

is made to mitigate these time delays which may lead to 

degraded performance. 
In this study, we tested the hypothesis that predicting the 

 
Manuscript received March 15, 2012. This work was supported by NIH 

NINDS R01 N545853-01 to NGH and AHF.  

F. R. Willett and A. J. Suminski are with the Department of Organismal 

Biology and Anatomy at the University of Chicago, Chicago, IL 60637 

USA (fwillett@uchicago.edu and asuminski@uchicago.edu).  

A. H. Fagg is with the School of Computer Science at the University of 

Oklahoma, Norman, OK 73019 USA (fagg@cs.ou.edu). 

N. G. Hatsopoulos is with the Department of Organismal Biology and 

Anatomy and the Committee on Computational Neuroscience at the 

University of Chicago, Chicago, IL 60637 USA (nicho@uchicago.edu).  

subject’s intended future movement at a time lead equal to 

the control delay, and using this as the command signal for 

our controller, would compensate for delay and improve 

performance. Furthermore, we expected that compensating 

for the delay in our BMI control loop would improve reach 

performance by allowing the subject to make quicker 

corrections, and by allowing the subject to react more 

quickly to a new target. 

II. METHODS 

A. Behavioral Task 

One adult male rhesus macaque (Macaca mulatta) was 

trained to control a cursor in a two-dimensional workspace 

with our BMI that decoded the monkey’s intended hand 

position based on neural activity in primary motor cortex 

(MI) from the recent past. The monkey sat in a primate chair 

holding his arm still while it was abducted 90 degrees and 

supported by the KINARM, a two-link robotic exoskeleton 

(BKIN Technologies, Kingston, ON). Direct vision of the 

monkey’s arm was precluded by a horizontal projection 

screen, on which the cursor and the targets were projected 

during the random target pursuit (RTP) task. This task 

required the monkey to continuously move a cursor (6 mm 

diameter) to a square target (2.25cm
2
). Each time the 

monkey hit a target, a new target appeared immediately in a 

randomly chosen position of one of 9 locations defined by a 

3x3 grid within the workspace (14.2 by 13 cm). 

Each experimental session consisted of two conditions: 

visual observation followed by brain control. During visual 

observation, the monkey held his arm still while he observed 

movements of the cursor hitting targets. These movements 

were recorded previously while the monkey performed the 

task with his own arm. We trained the neural decoders in our 

BMI by associating recent spiking activity with the position 

of the cursor during visual observation. During brain control, 

the monkey used these neural decoders to control a 

simulated arm (Figure 1), whose hand position was 

displayed to the monkey as a cursor in the 2D workspace. In 

order to complete a successful trial and receive a juice 

reward, the monkey was required to sequentially acquire two 

to three targets (brain control) or five to nine targets (visual 

observation). In either condition, if the monkey moved his 

arm outside of a 2 cm circle in the center of the KINARM’s 

workspace, the screen was shut off and the robotic 

exoskeleton controlled his arm back to the center of the 

workspace. A trial was aborted if any movement between 
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targets took longer than 5 seconds. 

B. Real-Time BMI 

Our BMI (Figure 1) converts neural activity into elbow 

and shoulder joint torques in order to drive the movement of 

a two-link simulated arm. This simulated arm captures the 

dynamics of both the KINARM and the monkey’s arm [3].  

Xc represents the position of the hand and determines the 

location of the cursor on the screen. The torques, T, which 

drive the arm, are generated by a Proportional-Derivative 

(PD) controller that moves the simulated arm towards XF, 

the position decoder’s prediction of the monkey’s intended 

hand position after it has been low-pass filtered. The PD 

controller causes the simulated arm to lag behind the 

filtered, decoded position by approximately 100ms.  

The position decoder, implemented as a linear, 

finite impulse response (FIR) filter, predicts the monkey’s 

intended hand position, XD, from the neural data. In our 

approach, the neural activity is represented as a series of 

binned spike counts, and the hand position is reconstructed 

from a linear combination of these spike counts plus a 

constant offset representing the mean hand position [3]. We 

employ a history of B = 20 bins (filter taps) of ∆t = 50 ms 

each for every neuron, giving the filters access to a total of 

one second of neural spiking history. Specifically, signal k 

(X or Y hand position in the present, or at a time lead into 

the future) at discrete time bin t, is reconstructed as follows: 
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where i indexes over the C neurons, j indexes over time bins, 

N(i, t) is the spike count of neuron i over time bin t, A are the 

coefficients of the filter, and k  is the mean value of signal k. 

The coefficients are solved for analytically with ridge 

regression [3], using 250 seconds of spiking activity and 

cursor movement data collected during visual observation.  

To obtain a decoder that predicts intended future 

movement, we solve for the coefficients that best predict the 

cursor position at some time lead into the future (relative to 

the one second of spiking history). This requires only a 

simple alteration of the training data set to pair the neural 

data with the state of the cursor some at a given time lead, 

τ,   into the future. The decoded position XD, representing 

the monkey’s intended hand position in the present or in the 

future, is fed through a low pass Butterworth filter (cutoff 

frequency = 3.0 Hz), adding an additional delay to the 

decoded position signal of approximately 100ms. 

C. Electrophysiology 

The monkey was chronically implanted with a 100-

electrode microelectrode array (Blackrock Microsystems, 

Inc., Salt Lake City, UT) in MI contralateral to the arm used 

for the task. During the recording session, signals from up to 

96 electrodes were recorded using a Cerebus acquisition 

system (Blackrock Microsystems). Single and multiunit 

spiking events were sorted online and used to train and drive 

the BMI during the experiments. On average, 68.6 ± 4.7 

(mean ± standard deviation) neural channels were sampled 

during each BMI session. All of the surgical and behavioral 

procedures were approved by the University of Chicago 

Institutional Animal Care and Use Committee and conform 

to the principles outlined in the Guide for the Care and Use 

of Laboratory Animals.  

D. Offline Decoding 

We used visual observation data for an offline analysis of 

decoder performance and decoder coefficients. A cross-

validation approach was used to examine the performance of 

the decoder when predicting different time leads into the 

future. Binning spike counts and cursor positions into 50ms 

bins, we slid a 5000 bin training set window across the 

dataset in 1000 bin increments to generate a series of 

training sets. For each training set, we then tested the 

decoder’s ability to reconstruct the observed cursor position 

on the remaining bins in the dataset. To measure 

performance, we computed the fraction of variance 

accounted for in the cursor position by the decoder.  

In addition to decoding performance, we also examined 

the value of the coefficients for decoders of differing future 

prediction time leads. Since the decoder makes use of 20, 

50ms bins (taps) of spiking history for each neuron, we can 

examine the relative weights of the coefficients for these 20 

taps to assess the time period from which the decoder is 

extracting the most information. To compare the magnitude 

of the decoder coefficients, we normalized the coefficients 

for the X and Y position decoders independently by taking 

the absolute value of the z-score of the coefficients. We then 

pooled coefficient observations across decoders, days, and 

neurons, to yield 20 distributions of coefficients 

corresponding to each of the 20 taps. Finally, we computed 

the median normalized coefficient value for each tap and for 

each future prediction time lead to examine the shape of the 

decoder. 

E. Online Experimental Procedure 

We varied the future prediction time lead (τ) while we 

held the delay in the BMI control loop constant at 200ms 

 

Figure 1: Our BMI uses neural activity recorded from the primary motor 

cortex to generate an intended hand position in Cartesian space which the 

monkey then uses to hit targets. XD, XF and XC are two-element column 

vectors containing the X and Y components of a hand position in Cartesian 

space, ε is a two-element column vector containing the X and Y 

components of an error signal, θ& is a two-element column vector 

containing elbow and shoulder joint velocities, and Tp, Tv, and T are two-

element column vectors containing joint torque terms. Two sources of 

delay are illustrated: a low-pass Butterworth filter that smooths the output 

of the position decoder (XD), and a PD controller that drives the arm 

towards XF.  
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(i.e. a low pass Butterworth filter which delayed the position 

signal by 100ms and a PD controller with a lag of 100ms). 

We expected that performance would be optimal at τ = 200 

and would degrade proportionally away from this point. The 

experiment included multiple decoders, predicting intended 

movement at time leads of 0ms, 50ms, 100ms, 200ms, 

300ms, 400ms, 450ms, 500ms, and 600ms. Approximately 

110 reaches were collected for each condition on each day, 

though not all conditions were tested on all 9 days. 

F. Kinematic Analyses 

We used three kinematic measures to quantify the 

performance differences between BMI conditions for a given 

movement: 1) normalized time-to-target, 2) normalized path 

length, and 3) normalized orthogonal direction changes. The 

normalized time-to-target metric is defined as the time 

difference between two consecutive target hits divided by 

the distance between the targets and has units of s/cm. The 

normalized path length metric is defined as the path length 

of the reach trajectory between two consecutive targets 

divided by the distance between the targets and is a unitless 

ratio of distance measures. The normalized orthogonal 

direction changes metric counts the number of times the 

reach trajectory reverses direction along the axis defined by 

the line connecting two consecutive targets, and is divided 

by the distance between the targets. 

We further normalized these metrics by taking out the day 

to day variation in performance in order to isolate 

differences in performance between conditions across days. 

For each day, we subtracted a constant c, which represented 

the average level of performance on that day, from the mean 

performance in each condition. We called these metrics, 

which represent the difference between the performance in a 

given condition and the average performance on that day, as 

∆ Time to Target, ∆ Path Length, and ∆ ODC (Orthogonal 

Direction Changes). For a given day, c was computed by 

averaging the mean performances of a subset of conditions 

that were tested every day. 

III. RESULTS 

A. Offline Experiment 

To determine the feasibility of predicting the monkey’s 

intended hand position some time lead into the future, we 

examined the ability of our decoder to use neural activity to 

reconstruct observed movements of a cursor (Figure 2A).  

Performance, measured by the fraction of variance of the 

cursor movements accounted for by the decoder, remains 

relatively steady when predicting 0ms to 200ms into the 

future, but rolls off quickly for τ > 200ms. 

We also examined the coefficients of the decoders used to 

generate the performance results in Figure 2A. By pooling 

together normalized coefficients from the filters across days, 

neurons, and decoders, we were able to compute which taps 

were weighted most heavily for the different future 

prediction time leads (τ) tested. As τ increased, the 

coefficients from earlier taps became more heavily weighted 

(larger coefficient values), suggesting that the decoder uses 

more information from recent neural activity as it is asked to 

predict movements farther into the future (Figure 2B). 

B. Online Experiment  

In this experiment (Figure 3), we examined how 

performance varied as we varied the future prediction time 

lead (τ), while holding the level of delay in the BMI 

controller constant at 200ms. To examine how performance 

varied with τ, we compared distributions of the differences 

between the mean performance for a given condition and the 

average level of performance on a given day (see Methods: 

Kinematic Analysis). Mean differences greater than zero 

indicate above average performance for a given condition on 

a given day. A Kruskal-Wallis test was first performed for 

each of the three performance metrics, showing a main 

effect of τ in all cases (alpha = 0.05). Post hoc comparisons 

between different conditions were made with a Tukey-

Kramer multiple comparison procedure after rank-

transforming the values (family wise error rate = 0.05).  

We found that the time taken to complete a reach 

decreased as τ increased to 200, and then flattened for later 

conditions (significant decrease in time-to-target between 

 

Figure 2: Characteristics of decoders as a function of τ during offline 

decoding.  (A) The median fraction of variance accounted for (FVAF) 

when using our decoder to reconstruct observed cursor movements at 

various time leads (τ). For each time lead, median FVAF for X (red) and Y 

(blue) hand position is shown with a 95% CI about the median. Curves are 

offset in the x-direction to aid visualization. (B) The relative weight of 

decoder coefficients when our decoder is trained to predict various time 

leads into the future (τ, denoted by lines of different color). Error bars 

denote 95% CI about the median. Filter tap 1 is the coefficient relating the 

most recent spiking activity to the hand position. 
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τ=0, and τ = 200, 300, and 400). The path length and ODC 

metrics show that reaches became straighter and smoother as 

τ increased to 200, then became less so as τ increased further 

(significant decrease in path length and ODC from τ=0 to 

τ=200, significant increase in path length and ODC from τ = 

200 to τ = 500 (path length) and τ = 400 (ODC)). 

IV. DISCUSSION 

Our offline results demonstrate that future movements can 

be accurately reconstructed without much loss in fidelity up 

to a time lead of 200ms, verifying the feasibility of 

predicting future intended movements. Testing this 

technique online, we also demonstrated that decoding 

intended future movements and using them as a command 

signal for a BMI can significantly improve performance, 

making reaches faster, straighter, and smoother. These 

results represent a significant advance in the BMI field, as 

they show that it is possible to compensate for the negative 

effects of delay in BMI control loops through a simple 

solution. Decoders incorporating future prediction may yield 

performance benefits in all BMI systems that interpret recent 

neural activity as an intended motion in the present.  

It is worth noting that the activity of MI neurons typically 

leads movement by approximately 120ms or 40ms in intact 

individuals making or observing movements, respectively 

[4]. This physiological delay is attributed to the conduction 

time necessary for cortical activity to reach the periphery 

and to the muscle activation dynamics that transform action 

potentials into muscle activity. We believe that our future 

prediction decoders are able to accurately predict future 

intent by making use of this neural activity which naturally 

leads movement. 

A limitation of using future prediction to mitigate control 

delays is that delay is never fully removed from the system.  

That is, delay in the control loop places an absolute floor on 

the reaction time, because even a command signal 

representing future intentions is delayed in execution. In the 

case of a pure delay (as opposed to a delay from low-pass 

filtering), the cursor would be unable to move in response to 

a new movement command for at least the amount of time 

delay. However, when the command signal is executed, if it 

represents a future intent, then the cursor will “catch up” to 

the subject’s intention. This will never happen if the decoder 

predicts present intent. We believe that a command signal 

representing future intent is therefore the most appropriate in 

a BMI system with delays. 

Other issues remain to be addressed in future work. First, 

the offline results show that the decoder coefficients 

corresponding to recent neural activity become more heavily 

weighted when the decoder is asked to predict future 

movements. This could have a side effect of making the 

decoder more responsive to newer movement commands, 

possibly accounting for some or all of the performance 

improvements.  

Second, our performance metrics fail to disambiguate the 

effects of future prediction on the start time of the reach and 

on the quality of the reach itself. We defined a reach as the 

entire cursor trajectory from the appearance of a new target 

to the next target hit. Therefore, we include any movement 

of the cursor made after a new target appears, but before a 

movement command to the new target is generated and 

executed. Since predicting future movement may decrease 

this “reaction time” interval by compensating for delays, 

reaches made with future prediction could appear to be 

improved only because the time taken, the distance traveled, 

and the direction changes made during this reaction time 

period have been decreased. From the data shown, it is 

unclear if the performance benefits result from a decreased 

reaction time, an improved reach, or both.  
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Figure 3: Online performance results from 9 datasets where multiple future prediction time leads (τ) were tested on each day while we held the BMI 

controller’s level of delay constant at 200ms. The differences between the mean performance and the average level of performance on a given day are plotted 

(blue circles), and the median of these means is plotted for each condition (red bars). Optimal performance is reached around τ=200. The black bars indicate 

significant differences between conditions. 
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