
 

Abstract— In this paper we present a novel method for left 
ventricle (LV) endocardium motion reconstruction using high 
resolution CT data and tagged MRI. High resolution CT data 
provide anatomic details on the LV endocardial surface, such as 
the papillary muscle and trabeculae carneae. Tagged MRI 
provides better time resolution. The combination of these two 
imaging techniques can give us better understanding on left 
ventricle motion. The high resolution CT images are segmented 
with mean shift method and generate the LV endocardium mesh. 
The meshless deformable model built with high resolution 
endocardium surface from CT data fit to the tagged MRI of the 
same phase. 3D deformation of the myocardium is computed 
with the Lagrangian dynamics and local Laplacian deformation. 
The segmented inner surface of left ventricle is compared with 
the heart inner surface picture and show high agreement. The 
papillary muscles are attached to the inner surface with roots. 
The free wall of the left ventricle inner surface is covered with 
trabeculae carneae. The deformation of the heart wall and the 
papillary muscle in the first half of the cardiac cycle is presented. 
The motion reconstruction results are very close to the live heart 
video.  

I. INTRODUCTION

Early diagnosis of cardiovascular diseases with the aid of 
medical imaging technology and early treatment of these 
diseases can greatly reduce the risk of diseases. Medical 
image technology such as Computed Tomography (CT) and 
tagged Magnetic Resonance Image (tagged MRI) provide a 
non-invasive way to view anatomic structure and motion of 
the atria and ventricles. The multi-detector CT with high 
rotation speed provides a high resolution view of heart wall, 
especially the detailed anatomic structures such as papillary 
muscle and trabeculae carneae on ventricle endocardial 
surface. The papillary muscles are attached to the mitral 
valves with some tissue and help to keep the mitral valve from 
being inverted when the blood pressure rises inside the 
ventricles. The dysfunction of the papillary muscles due to 
ischemia or infarction can adversely affect cardiac function 
through the insufficient strain on mitral valves. The 
deformation of the papillary muscles causes great interest in 
cardiovascular disease research (Axel 2004)  [1]. The time 
resolution of CT is about one third of TMRI. The CT data we 
have has 10 frames in a heart beating cycle, while tagged MRI 
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data has 30 frames. Besides better time resolution, with 
tagging techniques, taggedMRI can show not only the surface 
deformation, but also the in-wall myocardium motion such as 
the twisting in the short Axis circumferential direction. With 
meshless deformable models, the motion of myocardium can 
be reconstructed from tagged MRI. The deformation of 
detailed anatomic structure such as papillary muscle and 
trabeculae carneae cannot be achieved solely based on MRI. 
The LV endocardium directly contracts the blood and pump to 
the whole body. Their deformation can provide information 
for blood flow simulation in the LV. 

A lot of research has been dedicated to heart reconstruction 
from CT data. Chen et al. 2004 [2] reconstructed the whole 
heart from high resolution CT data, with the emphasis on the 
ventricle endocardial surfaces. His experimental results 
further proved that the papillary muscles are attached on the 
trabeculae carneae lining the ventricle wall instead of directly 
on the solid wall (Axel 2004 [1]). Ionasec et al. 2008 [3] built 
a 4D physiological model, which combines learning-based 
technologies into a coarse-to-fine approach, to reconstruct the 
aorta valve (AV) motion based on the CT data. Zheng et al. 
2008 [4] built a four-chamber heart model from the automatic 
segmentation results of cardiac CT volumes. In their work, 3D 
CT volumes are segmented with marginal space learning and a 
mesh fits onto the data with corresponding landmarks. Their 
mesh does not keep the detailed structure on endocardial 
surfaces. 

Deformable models (Metaxas et al. 1991 [5]) have been used 
for motion reconstruction from tagged MRI for a long time. J. 
Park et al. 1995 [6] presented deformable models to track the 
LV motion. K. Park et al. 2003 [7] further extended cardiac 
deformable models to recover the right ventricle (RV) motion 
and conduct 4D cardiac functional analysis using Finite 
Element Methods (FEM). Recently meshless deformable 
models [8, 9] were developed for LV motion reconstruction. 
The 3D motion field is computed and updated using the 
Lagrange equation. The external force is extracted from 
tagged MRI. The left ventricle model is deformed with 
meshless deformable models. 

3D Strain field is computed with moving least squares. We 
propose a novel dynamic deformable model for LV 
endocardium motion reconstruction. A CT frame at the end of 
diastole is chosen as the reference frame since the heart is the 
most static at this moment. Meanshift method with both the 
intensity and spatial information was used to segment the 3D 
volume. We fit the inner surface reconstructed from CT data, 
with a meshless deformable model, onto the tagged MRI data. 
The meshless deformable model deforms using the Lagrange 
equation as in [8, 9]. 

Our paper is organized as follows. Section 2 introduces the 
new model: 3D volume segmentation, mesh generation, and 
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model deformation. Section 3 presents the endocardial surface 
deformation results in a heart beating cycle. In section 4 we 
draw the conclusions and discuss possible improvements. 

II. PROCEDURE FOR PAPER SUBMISSION

A. Segmentation 

The 3D CT volume is first clustered with spatial and intensity 
information using the mean shift algorithm. Mean shift 
algorithm has the application such as edge preserving 
smoothing and image segmentation (Cosmaniciu 2002 
[10,11]). Each pixel in the volume is projected to a space 
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where xi is a point inside the kernel of x, K is the weight of
point xi in the kernel. The distance in space and the distance in 
intensity field are considered separately in the kernel weights
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where hs and hr are kernel bandwidths and C is the 
normalization constant. Clustered CT volume was thresholded 
into a binary volume. A 3D mesh consisting of triangular 
elements is generated along the surface with marching cubes 
algorithm. 

        
Figure 1. The original CT image on the left. The surface built with 
the mean shift clustering and marching cubes algorithm on the right.

B. Model Registration 

The physical location of the heart can be obtained from the 
DICOM files. Anatomical landmarks such as aorta, 
ventricular septum cusps, high curvature points of right 
ventricle and other feature points are semi-automatically 
detected by curvature, equal space interval, and manual 
marking. 300 corresponding points are sampled on those 
landmarks. These point pairs provide long range external 

forces for meshless deformable models. The meshless 
deformable model fitting on the TMRI is shown in Figure 1. 

Denote the generic model boundary landmarks as pi, the 

TMRI contour landmarks as qi.
o
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model-centered coordinates, such as 0
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T p q= − ,is the translation between the model and the image 

data. Assuming all the points are going on the same 
transformation, transformation matrix A can be calculated as 
in equation 7. When a generic heart mesh is registered onto the 
patient image data, assuming the transformation is the 
similarity transformation can avoid artifacts. The rotation can 
be isolated from the rest of the transformation with polar 
decomposition. The error function is the difference between 
image landmarks and transformed model landmarks. We 
minimize the error in equation 6 by setting its first derivative 
to zero, and yield equation 7. 
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Second term App is a symmetric matrix, which only has the 
scaling information. The rotation matrix can be estimated by 
decomposing Apq. Apq can be decomposed to a rotation matrix 
R and a scaling matrix P. R is a unitary matrix and P is a 
positive-semidefinite Hermitian matrix. The singular value 
decomposition of Apq can be written as '

pq
A W V= Σ . W

and V are unitary matrices describing rotation and Σ is a 
diagonal matrix describing the stretches in orthogonal axes. 
We have 

'P V V= Σ , 'R WV=                           (8)  

If A is invertible, the rotation matrix of two sets of points can 
be calculated by substituting equation (10) into R=ApqP

-1. 
After obtaining translation and rotation, uniform scaling can 
be deduced by comparing the average magnitude of vectors in 
the object-centered coordinates. The surface mesh generated 
from CT volume is registered onto the tagged MRI with the 
translation, rotation and uniform scaling. 
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C. Deformation with Deformable Models 

In meshless deformable models, an object is represented as 
point clouds. Point locations are in heart coordinates and can 
be computed with parameterized functions. Tagging line 
tracking results [12] provide external forces for LV model 
deformation. Instead of grouping points with elements and 
keeping the shape with a stiffness matrix, points interact with 
each other through kernels.  
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Figure 3. The left image is a mesh based deformable model. The 
right image is a meshless deformable model, in which the volume is 
represented by point clouds.  

The left image is a mesh based deformable model. The right 
image is a meshless deformable model, in which the volume is 
represented by point clouds. They are both in prolate 
spheroidal coordinates and can be modeled by parameterized 
functions.  
The Lagrangian equation for the model is 

ext int

u f f= +&           (11) 

where u is the displacement of myocardium, u  is the velocity,  
fext is the external force and fint is the internal force. The 
internal force can be done with Laplacian coordinate local 
deformation. The velocity of a point in DICOM coordinates 
can be calculated as 

     Lu q=&              (12) 

where L is the Jacobian matrix between point coordinates and 
parameters. With the Lagragian equation, the Jacobian matrix 
can be moved to the right side and the velocity of the variables 
q can be calculated. The external forces fext on parameters are 
integrated over the volume. 

L
q ext

q f f
Ω

= = ∫&        (13) 

The integration over the volume can be interpreted as the sum 
of the integrals over each kernel in the volume. The 
coordinates of particles in the meshless deformable model can 
be updated by recalculating parameterized function with the 
updated parameters, as in equation 12. 

D. Local Laplacian Volume Deformation 

After global deformation, the model is very close to its target 
shape. Laplacian Volume Deformation further refines the 
model locally, makes the material points converge to the 
locations in the next frame with small error threshold. We 
encode each point in the meshless deformable models into a 
Laplacian representation to keep the intrinsic geometric detail 
of myocardium. The Laplacian coordinates in a mesh 
describe the local geometric difference in Sorkine et al. [13]. 
We further extend it from a surface editing tool to a method 
for tracking geometric details of a volume. 

The geometry of points on the model can be described as a 
set of differentials { }

i

δΔ = . The Laplacian coordinate of a 

point is the difference between the point location and the 
average of its neighbors' location. 
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The transformation can be described in a matrix form 

LVΔ = , where 1

L I D A

−= − . A is the mesh adjacency 
matrix and 

1 2

{ , ,..., }
n

D d d d=  is the degree matrix. We 

combine landmarks and sampled points together to make a 
point set. Fixing the landmarks at the target locations 

target
v

obtained from the next MRI frame, the rest of the free points 
deform to minimize the following error function. 
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where transformation Ti on each point is the unknown matrix 
and can be written as a linear function of V’. V’ can be solved 
by minimizing the quadratic function. Ti is an approximation 
of the similarity transformation when the rotation angle is 
small. In our model, the major rotation is handled in the global 
deformation part. The small angle assumption of Laplacian 
deformation is made happen by iterations. 

Figure 2. LV model with the endocardial surface reconstructed from CT data is registered 
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III. EXPERIMENTAL RESULTS

We applied our method to five different cardiac datasets. 
The CT images were acquired on a 320-MSCT scanner 
(Toshiba Aquilion ONE, Toshiba Medical Systems 
Corporation). This advanced diagnostic imaging system is the 
world's first dynamic volume CT scanner that captures a 
whole-heart scan in a single rotation, and achieves an isotropic 
0.5mm volumetric resolution with much less motion artifact 
than the conventional 64-MSCT scanners. The created data 
had 512 by 512 by 330 pixels, with an effective 
atrio-ventricular region measuring about 3003 pixels. In 
Figure 4, we show the 3D motion of LV surfaces generated 
from meshless deformable models. From the segmentation 
results, we can observe that most of trabeculae carneae are 
distributed on the free wall. Two papillary muscles of the LV 
are connected to the wall with roots. The reconstructed motion 
of the LV endocardial surfaces is more readily appreciated 
with such rendering than from the 3D volume. Two papillary 
muscles contract with the LV myocardium during the systole. 
At the end of systole, some of the trabeculae carneae clasp on 
the heart wall. 

IV. CONCLUSION

We have developed a cardiac deformable model with all 
detailed anatomic structures on the LV endocardial surface 
with CT data, and have reconstructed the motion of the model 
with cues derived from tagged MRI. The reconstructed 
motion sequences show high agreement with cardiac video 
based on the comparison between the results and the live 
cardiac video. 
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Figure 4. LV deformation results in the first half of a cardiac cycle.  

4086


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

