
  

 

Abstract— Implantation of cardioverter defibrillators is the 

most widely used primary preventive care for sudden cardiac 

death (SCD). Current clinical practice of using a left-

ventricular ejection fraction threshold as the sole criterion for 

defibrillator insertion results in many unnecessary 

implantations. To address the need for alternative criteria, we 

seek three-dimensional shape metrics of the left ventricle 

derived from clinical cardiac magnetic resonance images that 

can predict SCD risk. The present study is a proof-of-concept, 

where we have combined image-processing and computational 

anatomy techniques to develop a processing pipeline to 

statistically compare localized left ventricular shape metrics 

between patient groups. We tested the methodology with data 

from a small cohort of patients, classified into two groups based 

on SCD risk. The results demonstrate that our approach is able 

to locate systematic wall thickness differences between the two 

groups. 

I. INTRODUCTION 

Despite significant advances in therapy, heart failure 
remains the leading cause of cardiovascular morbidity and 
mortality, and sudden cardiac death (SCD) accounts for about 
50% of all deaths in heart failure patients, affecting hundreds 
of thousands of Americans per year [1]. Identification of 
patients who are at risk for SCD and providing them with 
implantable cardioverter defibrillators (ICDs) is the most 
widespread primary preventive method for SCD. Currently, 
the detection of SCD susceptibility is performed primarily 
based on the criterion of left ventricular ejection fraction 
(LVEF) < 35%. Though LVEF can be easily measured non-
invasively using various imaging techniques, this parameter 
alone does not adequately characterize SCD risk. Indeed, 
amongst  patients who are selected solely on the basis of 
LVEF, the rate of appropriate device firings averages only 
about 5% per year [2]. Furthermore, ICD therapy is costly, 
and can lead to procedural complications, infections, device 
malfunctions, increased risk for subsequent heart failure 
events, and diminished quality of life [3]. Hence, a more 
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accurate approach to identifying patients who would benefit 
from ICD therapy is desired. 

It is well-known that LV remodeling in cardiomyopa-
thies, which often includes LV dilation, shape alterations, and 
wall thinning, is a strong predictor of morbidity and 
cardiovascular mortality [4]. However, little in the way of 
knowledge of the three-dimensional (3D) shape of the 
diseased heart is incorporated into current risk algorithms for 
SCD. Incorporating knowledge of the anatomic risk factors, 
using a safe, accurate and reproducible non-invasive imaging 
approach, may significantly enhance SCD risk prediction 
algorithms and better identify a phenotype at risk for SCD. 

Among imaging modalities, cardiac magnetic resonance 
imaging (CMRI) and its combination with late gadolinium 
enhancement (LGE) have emerged as powerful methods to 
accurately and reproducibly describe myocardial tissue 
structure, and the remodeling of this structure under disease 
conditions [5]. Additionally, the recently developed field of 
computational anatomy offers rigorous mathematical and 
algorithmic tools for the description, transformation, 
comparison, and statistical inference regarding image-based 
cardiac geometry [6]. These advances have, however, not 
been leveraged for assessment of SCD risk in a sufficiently 
large, clinically-relevant population undergoing ICD 
implantation. 

The overarching goal of our project is to develop and test 
a methodology to identify three-dimensional (3D) LV shape 
metrics that can predict SCD risk, based on CMRI data and 
computational anatomy techniques, to improve selection of 
patients for ICD implantation. The present study is a proof-
of-concept, in which we have implemented an image-
processing pipeline to compare 3D LV wall thickness and 
epicardial surface curvature between patient groups. We have 
tested our methodology with data from patients who were 
selected for ICD implantation based on reduced LVEF, 
followed after implantation for events such as appropriate 
ICD firing, and divided into two groups with differing SCD 
risks based on the follow up data. Our results demonstrate 
that the proposed methodology can locate regions of 
statistically significant LV wall thickness differences 
between the two groups. 

II. METHODS 

Fig. 1 outlines the processing pipeline for our 
methodology. Given a collection of patient images, the 
overall scheme is to reconstruct the LV geometries from the 
images, compute shape metrics from the reconstructed 
geometries, register the geometries with an arbitrarily chosen 
geometry referred to as the atlas, map shape metrics to the 
atlas space based on the registration, and perform statistical 
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analysis on this mapped data. In the following, we describe 
the various components of the pipeline by demonstrating how 
a CMRI image of an example patient was processed. The 
letters A-E inside the blocks in Fig. 1 refer to the 
corresponding subsections below. 

A. Reconstruction of 3D LV Geometry 

The reconstruction of LV geometry from clinical MR 
images is a very challenging task, because the intensity 
contrast between myocardial tissue and the rest of the torso is 
poor, and the image resolution is very low, especially 
orthogonal to the short-axis plane, where it averages about 
10mm. We have adopted a semi-automatic approach for the 
LV reconstruction as illustrated in Fig. 2. Briefly, in each 
short-axis slice of the image, smooth contours that represent 
LV endocardium and epicardium were semi-automatically 
drawn using CineTool® (General Electric Healthcare). The 
section of the endocardial contour that belongs to the septum 
was then manually identified by placing two landmark points 
near the right-ventricular (RV) insertion points using a 
graphical user interface developed in-house in MATLAB® 
(Mathworks, Inc.). Fig. 2A shows the contours and landmark 
points for an example image slice. From the contours and 
landmark points, three sets of 2D binary masks, each set 
implicitly representing the LV endocardium, LV epicardium, 
and septal endocardium were constructed as displayed in Fig. 
2B. To construct the mask for septal endocardium in each 
slice, two rays that start from the centroid of the endocardium 
and pass through the landmark points were computed, and the 
pixels that lied between the rays marked. Each set of 2D 
masks was then interpolated to build a 3D binary mask at 
1mm isotropic resolution, based on a variational strategy 
proposed by Turk and O’Brien [7]. In this process, for each 
set of 2D masks, a 3D thin plate spline function   was 
defined such that     at pixels along the perimeters of the 
masks, and     at pixels those are adjacent to the perimeter 
pixels and inside the mask. By discretizing the 3D functions, 
and thresholding for values above 0, 3D masks for LV 
endocardium, LV epicardium, and septal endocardium were 
generated. We had experimented with alternative techniques 
for interpolation, including cubic splines [8], spherical 
harmonics [9], and cylindrical harmonics [9], but found that 
the variational strategy outperforms the others in terms of 
accuracy of fit and smoothness of interpolation. Finally, the 
geometry image of the LV wall was generated by combining 
the three 3D masks, as illustrated in Fig. 2C. Note that the 

final geometry image has three different intensities, one for 
each of the LV chamber, LV free-wall, and septal regions. 

B.  Computation of Shape Metrics 

For each voxel along the epicardial surface of the 
reconstructed 3D geometry, the principal curvatures of the 
surface, and the thickness of the LV wall were computed. 
The curvature values were computed as described in 
Goldman [10]. Given a surface implicitly represented as an 
isosurface of a function g in 3D, the principal curvatures at 
each point on the surface are given by 
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where    and  ( ) denote the gradient and Hessian of  . 
We evaluated two options for  , namely the 3D thin plate 
spline function  , and a Gaussian-smoothed version the 3D 
mask, where both   and the mask were built as described 
above from the set of 2D binary masks corresponding to the 
epicardium. We adopted the latter option because it was 
found to be less susceptible to noise. The mean and Gaussian 
curvatures of the surface points were be obtained by 
computing the average and product of the principal 
curvatures, respectively [10]. The wall thickness at a voxel 
along the epicardial surface was calculated as the distance to 
the nearest voxel that lied along the endocardium. Fig. 3 
shows the spatial distribution of the mean curvature and wall 
thickness corresponding to the LV geometry in Fig. 2C. 

C.  Registration of Patient Geometry with Atlas 

To perform statistical analysis of the localized shape 

metrics computed in the previous step, it was necessary to 
establish a common coordinate system for all patient 
geometries. To this end, we computed an anatomically 
meaningful bijective correspondence between each patient 
LV geometry and the geometry of an atlas using image 
registration algorithms, where the atlas is an LV geometry 

 
Fig. 1. Processing pipeline for detecting 3D LV shape metrics that 
may predict SCD. 

 

 
Fig. 2. Reconstruction of 3D LV geometry from CMR image slices. 

(A) An example slice highlighted with endocardial (red) and 
epicardial (blue) contours, and the endocardial landmarks (green) 

corresponding to the septum. (B) The 2D LV endocardial (red, 

appearing as magenta), LV epicardial (blue), and septal endocardial 
(green) masks superimposed on each other. (C) The reconstructed 3D 

geometry after interpolation; the coloring scheme is similar to (B). 

 

 
Fig. 3. Shape metrics computed for the LV geometry shown in Fig. 

2C, displayed on the epicardial surface. (A) Epicardial curvature. (B) 

Wall thickness. 
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arbitrarily selected from the set of patient geometries. Fig. 4A 
displays the atlas geometry that we used in the present work. 
The bijective correspondence was computed using a 
combination of affine transformation and multi-channel large 
deformation diffeomorphic metric mapping (MC-LDDMM), 
with the 3D endocardial, epicardial, and septal masks 
described under Section 2A as channels [11]. The affine 
transformation was based on seven landmark points: the 
apex, the centroid of the LV chamber at the base, the two RV 
insertion points at the base, and three points that evenly 
divided the epicardial contour of the LV free-wall at the base. 
These landmarks points were automatically extracted from 
each LV geometry image. The affine transformation provided 
an initial registration for MC-LDDMM, a non-linear image 
registration algorithm that computes diffeomorphic 
(invertible and smooth) transformations between images [11]. 
Given an atlas image        and a patient image      
 , MC-LDDMM computes a flow of diffeomorphisms 
       to transform    to match   , where      is the 

3D cube in which the image data are defined, and        . 
The diffeomorphic property of MC-LDDMM guarantees that 
 he a las does no  “fold over” i self during deforma ion, 
thereby preserving the integrity of anatomical structures. For 
detailed mathematical descriptions of the MC-LDDMM 
algorithm and implementation, the reader is referred to 
previous publications [6, 11]. Fig. 4B-D illustrate the 
registration of the atlas geometry with the patient geometry 
shown in Fig. 2C. 

D. Mapping of Shape Metrics to Atlas Space 

Based on the bijective mappings computed in the 
previous step, the shape metrics calculated at each epicardial 
point of a given patient LV geometry was mapped onto the 
corresponding point of the atlas epicardium. Mathematically, 
if   is a point on the epicardial surface of a patient geometry, 
and   the bijective mapping from the atlas to that patient LV 
geometry, then the shape metrics at   are mapped onto the 
epicardial point on the atlas that is nearest to    ( ). Note 
that, due to imperfections in volume registration,    ( ) was 
not guaranteed to be an epicardial point on the atlas, and 
therefore, the nearest neighbor calculation was required. Fig. 
5 illustrates the mapping of wall thickness data in Fig. 3B 
onto the atlas epicardial surface. Evidently, the pattern in Fig. 
5 is a deformed version of that in Fig. 3B. 

E.  Statistical Analysis 

Following the step described above, each point on the 
atlas epicardium was associated with curvature and thickness 
values from the corresponding point on the epicardium of 
each of the patient geometries. In the final step of the 

methodology, the collection of patients were divided into two 
or more groups based on post-imaging follow up data such as 
number of ICD firings. A Wilcoxon rank-sum test (for two 
groups) or a Kruskal-Wallis test (three or more groups) [12] 
was performed on each shape metric separately at each point 
on the atlas epicardium. A significance level of        was 
used to determine points with statistical differences. The 
analysis was performed with and without correction for 
multiple comparisons, where the correction was performed 
using permutation tests [13]. 

III. RESULTS 

Data used for the present study consisted of a breath-held, 
multi-slice single-shot 2D inversion-recovery true fast 
imaging with steady-state precesssion LGE-CMR images of 
14 patients with ischemic cardiomyopathy randomly selected 
from the CMR arm of the Prospective Observational Study of 
implantable Cardioverter Defibrillators (CMR-PROSE-ICD) 
at Johns Hopkins University. The CMR-PROSE-ICD started 
enrolling patients receiving ICD therapy for primary 
prevention of SCD beginning in 2003 [14]. The advantage of 
single-shot images is that they are acquired in a single breath 
hold, thereby limiting breathing motion artifacts. The image 
acquisition was performed prior to ICD implantation, and the 
patients were followed for events after implantation, 
including appropriate ICD firings for ventricular arrhythmias, 
heart failure hospitalizations, and SCD. More details of the 
CMR-PROSE-ICD data can be found in previous 
publications [5, 14]. Of the 14 patients, 5 patients had no ICD 
firings during follow up and comprised  he “low risk” group. 
In the remaining 9 patients, comprising the “high-risk” group, 

 
Fig. 4. Registration of the atlas geometry to match the patient 

geometry shown in Fig. 2C. (A) The atlas geometry with LV chamber 

(orange), LV free-wall (magenta), and septum (yellow). (B) The 
superimposition of the patient geometry and the atlas geometry. (C) 

The patient geometry and atlas geometry after affine transformation. 

(D) The patient geometry and the atlas geometry after MC-LDDMM 
transformation. 

 

 
Fig. 6. Results of statistical analysis of the shape metrics, overlaid on 
the atlas epicardial surface. (A) Analysis of mean curvature. (B) 

Analysis of Gaussian curvature. (C) Analysis of wall thickness. The 

orientation of the surface is the same as that in Fig. 4A. 

 

 
Fig. 5. Wall thickness data in Fig. 3B displayed on the epicardium of 

the atlas geometry in Fig. 4A after the mapping illustrated in Fig. 4B-

D. 
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each had at least one appropriate ICD firing or died of SCD 
or was hospitalized for heart failure. 

 One of the patient hearts in the low-risk group was 
chosen as the atlas (see Fig. 4A), and mean curvature, 
Gaussian curvature, and wall thickness metrics were 
statistically compared between the two groups, as described 
in Section II. Fig. 6 shows the results of the analysis without 
correction for multiple comparisons, overlaid on the 
epicardial surface of the atlas. Each point on the surface with 
a statistically significant result is displayed with a non-zero 
value, where the value equals the mean of the shape metric at 
the point corresponding to the high-risk group subtracted 
from that corresponding to the low-risk group. The analysis 
with correction for multiple comparisons produced no 
significant regions for any of the shape metrics in this study. 

In Fig. 6, there are several regions on the surface with 
statistically significant differences in curvatures, but these 
regions are very small, and therefore likely spurious. As such, 
we observe no physiologically meaningful differences in 
curvature values between the two groups. Similarly, there are 
a few small regions with statistically significant differences 
in wall thickness. However, there is one large region at the 
base of the septum with significant thickness results, where 
the mean thickness of the high-risk group is smaller than that 
of the low-risk group. The mean thickness difference in this 
region was 3.4mm. Since changes in wall thickness result 
from myocardial infarction, which appears as high signal 
intensity regions by LGE-CMR, we examined the image data 
to check if the statistical results are physiologically 
meaningful. Our evaluation revealed that, in 9 out the 14 
patients, there was intensity enhancement in the basal septal 
region of the image, indicating that significant differences in 
wall thicknesses were co-located with infarction. These 
results demonstrate that our methodology is able to locate 
systematic differences in LV wall thickness between groups 
of patients for SCD risk prediction.  

IV. CONCLUSION 

The goal of this study was to develop an image-based 
methodology for detecting differences in LV shape metrics 
between subject groups, for better selection of patients for 
ICD implantation, the primary preventive care for SCD. Our 
methodology was tested with a small population of patients 
that was divided into two groups, namely low-risk and high-
risk, based on post-implantation follow up data. The results 
demonstrate that, through there are no systematic epicardial 
surface curvature differences between the two groups, there 
are infarct-related wall thickness differences. Accordingly, 
the proposed methodology is an important first step toward 
combining state-of-the-art computational anatomy techniques 
and 3D shape metrics to assess SCD risk. Moreover, all steps 
of our processing pipeline, except the semi-automatic 
contouring of short-axis data, are completely automated, and 
this will facilitate the analysis of large amounts of data. 

The present study is a proof-of-concept for utilizing 
localized 3D LV shape metrics for SCD risk assessment, and 
accordingly, only a small population of patients was used. 
Extensive analysis of larger cohorts of patients will be 
necessary to identify specific shape differences between 
groups of patients with different risk levels. Also, the manual 

intervention in contouring may have introduced artifacts in 
curvature measurements. Finally, it will be important to 
extend our methodology to incorporate the shape, size, and 
location of the infarct, as infarct border regions have been 
associated with increased susceptibility to arrhythmias [5].  In 
so doing, patient-specific LV anatomy predisposing to SCD 
may be identifiable and potentially incorporated into clinical 
risk stratification models.   
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