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Abstract

In this work, localizing a capsule endoscope within

the gastrointestinal tract is addressed. It is assumed

that the capsule is equipped with a magnet, and that

a magnetic sensor network measures the flux from this

magnet. We assume no prior knowledge on the source

location, and that the measurements collected by the

sensors are corrupted by thermal Gaussian noise only.

Under these assumptions, we focus on determining the

Cramer-Rao Lower Bound (CRLB) for the location of

the endoscope. Thus, we are not studying specific es-

timators, but rather the theoretical performance of an

optimal one. It is demonstrated that the CRLB is a

function of the distance and angle between the sensor

network and the magnet. By studying the CRLB with

respect to different sensor array constellations, we are

able to indicate favorable constellations.

1. INTRODUCTION

When Given Imaging introduced the Capsule En-

doscope in 2000, it revolutionized the gastrointestinal

imaging field (GI). From the beginning it was clear that

accurate localization was indispensable - pictures taken

by the endoscope are obviously more valuable if they

can be associated with precise locations. To tackle this

challenge mainly two approaches have been proposed:

(i) Received Signal Strength (RSS)-based methods and

(ii) magnet-based methods. In RSS-based methods the

power readings from the sensors are used to locate the

endoscope, and the Pillcam from Given Imaging uti-

lizes this technique. However, the achievable accuracy

is shown to be no less than 3 cm [1], and it is even worse

for large parts of the trajectory. In order to improve

the performance, ultra wideband signals have been pro-
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posed [2]. However, spatially correlated shadowing

limits the precision for RSS-based methods and keeps

the achievable accuracy in the order of cm. Magnet-

based localization, on the other hand, has proven to

reach precisions in the order of mm [3, 4, 5]. The

main reason is that these methods see a much more pre-

dictable channel, than the RSS-based counterpart, be-

cause human tissues have very similar magnetic perme-

ability to air.

Magnet-based localization methods have so far

mainly been studied for quite specific scenarios and se-

tups [3, 4, 5]. As far as we know, there exists no stud-

ies that explain the general parameters that influence

the localization accuracy. This paper provides such a

contribution by deriving the Cramer-Rao Lower Bound

(CRLB) on the localization and orientation of the en-

doscope. The CRLB is a lower bound on the variance

of any unbiased estimator. In our setup, the CRLB be-

comes a function of the orientation and position of the

magnet relative to the sensors. It can therefore be used,

not only to determine the best expected performance by

any sensor network, but also to derive good sensor net-

work constellations.

2. System model and CRLB

It is assumed that the Capsule Endoscope (CE) in-

cludes a cylindrical magnet with length l and cross sec-

tion (area of the cylinder base) s. The magnet is as-

sumed to be magnetized along the main axis of the

cylinder. The magnetic flux density produced by the

magnet is observed by a magnetic sensor network. No

specific assumption is made on the magnetic sensors ex-

cept that their measurement noise is assumed to be in-

dependent and Gaussian. These assumptions enable us

to reproduce the results in [3, 4], and to make compar-

isons.

2.1. Observation Model

The magnet is associated with a magnetization vec-

tor with amplitude m0 ≥ 0 (Amp/meter), and orientation

h0 = [m,k, p]T , ‖h0‖2 = m2 + k2 + p2 = 1, in Cartesian

coordinates. Throughout the paper we will assume that
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the magnet is located at [a,b,c]T , where a,b,c can vary.

The magnetic flux vector bn seen by sensor n, located

at [xn,yn,zn]
T , can then be calculated as [6]:

bn = bT

(

3(h0
T dn)dn

‖dn‖5
− h0

‖dn‖3

)

(n = 1,2, · · ·N) (1)

where bT = (µrµ0slm0)/(4π), µr is the relative perme-

ability of the medium and µ0 = 4π × 10−7 is the mag-

netic permeability of the air. In (1), N is the number of

spatial points (sensors) in the array, dn = [xn − a,yn −
b,zn − c]T is the vector from the sensor location to the

magnet location, and ‖dn‖ =
√

dn
T dn is its Euclidean

norm. Figure 1 portrays an example where the flux of

the magnet is measured by a 2D sensor array. As de-

picted in Figure 1 the magnet orientation can be repre-

sented using spherical coordinates, where the two an-

gles are θ ,ϕ . It is assumed that the thermal noise is

the only source of errors, and this noise is considered

to be Gaussian. All sensors in the array are identical

and able to measure the magnetic flux along all three

directions. Thus the fusion center has access to 3×N

measurements. The observation vector can be written

as
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where the noise, w ∼ N (0,σ2I), is the only random

contribution. In this paper σ is set to be 1.2 × 10−8

which is the magnetic resolution specified by the man-

ufacture for (Honeywell HMC1043) magnetic sensors.

The reason for such an assumption is to consider a sce-

nario close to the implementation in [3], and to allow

comparisons.

2.2. Lower Bound on Localization Accuracy

The likelihood function, which depends on 6 deter-

ministic unknown parameters, ζ = [a,b,c,m,k, p]T , can

be written as:

fζ (p;ζ ) =
N

∏
n=1

1√
2πσ

e
− 1

2σ2 ‖pn−bn‖2

. (3)

The dependency on ζ is via the term pn −bn. Accord-

ing to the definition, the (i, j)-th element of Fisher In-

formation Matrix (FIM) for the vector ζ can be found

as

Ii j = E[− ∂ 2

∂ζi∂ζ j

ln fζ (P;ζ )]. (4)

The individual elements of the FIM are given in equa-

tions (9)-(14) of the Appendix. It is convenient to study
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Figure 1. 2D sensor array with equally spaced

sensors around the origin.

the CRLB in terms of the two angles in spherical co-

ordinates, (θ ,ϕ), rather than the three parameters in

Cartesian coordinates (m,k, p). Therefore we express

the CRLB for the vector η = (a,b,c,θ ,ϕ) based on

the derived FIM elements for ζ . (θ ,ϕ) are related to

(m,k, p) by:

θ = sin−1(
p

√

m2 + k2 + p2
) = sin−1(p) (5)

ϕ = cos−1(
m√

m2 + k2
).

Hence, the Jakobian matrix for calculating CRLB for

(θ ,ϕ)T from (m,k, p) can be written as:

K =

[

0 0 −1√
1−p2

−k
m2+k2

−m
m2+k2 0

]

. (6)

Therefore, the CRLB for η based on the chain rule [7]

is calculated as:

CRLBη = HI−1
ζ

H
T

(7)

H =

[

I3×3 03×3

02×3 K

]

Inspecting (7) and (9)-(13) it can be determined that the

CRLB is a function of two parameters: first the distance

between the magnet and the sensors array and the sec-

ond the relative magnet orientation. Clearly, increasing

the distance between the magnet and the sensor array

increases the CRLB. On the other hand it is less clear

how the CRLB reacts to the orientation changes.

3. Observations

We now investigate the CRLB under different sce-

narios in order to provide a better understanding of the

best achievable localization performance, and to sug-

gest possible constellations for the sensor array.
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Figure 2.
√

CRLB for 2D array in estimating a

and c and 1D array for estimating a.

3.1. Increasing the Number of Sensors

Consider a scenario similar to Figure 1 where the

sensor nodes are distributed uniformly within a 0.5×
0.5 square of the (x,y)-plane. The center of the square

coincides with the origin. The magnet is located at

[0,0,0.25]T , and all dimensions are in meters. First we

study the effect of increased sensor density (the number

of sensors in the square is increased). Then, we repeat

the same experiment, but place all sensors along the x-

axis (from -0.25 to 0.25). The magnet orientation is kept

along the z-axis, h0 = [0,0,1]T , for both scenarios.

Figure 2 shows the square root of the CRLB for es-

timators of a and c (the first and third coordinate of the

endoscope). Note that because the sensor constellation

in the (x,y)-plane is symmetric around the origin, the

CRLB for b will be the same as for a. From the plot, it is

clear that spreading sensors along two dimensions low-

ers the CRLB. It is known, that for parameter estimation

in white noise, the CRLB declines with 1/N, where N

is the number of observations [7]. Therefore we fit a

curve with slope 1/
√

N to both scenarios. This matches

closely the
√

CRLB curves for both cases, which pro-

vides a simple indication that our CRLB calculations

are correct. Note that the CRLB for estimation of c is

lower than CRLB for estimation of a. This is in line

with results in [3, 4], and happens because the magnet

is aligned along z-axis. In addition to CRLB plots, Fig-

ure 2 also depicts the mean error norm of the Maximum

Likelihood Estimator (MLE) for and increasing number

of sensors. The MLE is implemented to estimate a us-

ing a 2 dimensional sensor array, and its performance

curve should therefore be compared to the bound la-

beled as 2D array for Est. a. It can be seen that the gap

between these curves decreases as the number of sen-

sors increases. Since MLE is asymptotically efficient,

this is expected. Observe also that the performance of

the MLE is very close to what was reported in [3, 4].

There, the accuracy for 16 sensors was approximately 2

mm, which is similar to what we obtain.

3.2. Increasing the Distance

In order to investigate the CRLB under increasing

distance to the sensor array, we assume the magnet is

located at (0,0,c) and vary c from 10 to 100 cm. As be-

fore, we study the CRLB for estimation of a and c. The

elements in FIM (9)-(13) are inversely proportional to

a polynomial function of distance with the least degree

of 6. Therefore,
√

CRLB is described by a polynomial

function of distance with minimum degree of 3. Fig-

ure 3 portrays
√

CRLB as a function of distance. Com-

paring the curves, the CRLB for estimating c is lower

than for estimating a, as long as the magnet is close to

the plane. However, after a point the trend is reversed.

The reason is that after this point, on the average, the

sensors are closer to the magnet in x-direction than in

z-direction. To provide a general picture of how the

CRLB increases with increasing distance, two polyno-

mials proportional to c3 and c5, respectively, are also

plotted. It can bee seen that
√

CRLB is located in be-

tween these two polynomials. For the small to moder-

ate distances the c3 curve is a very good fit for
√

CRLB,

while it deviates from
√

CRLB as the distance grows.

For larger distances
√

CRLB becomes closer to c5. This

result is in line with the results in [4], where the authors

concluded that the localization error is proportional to

the 3rd power of the distance. However they did not

continue the experiment for larger distances. Therefore,

in general, the localization error does not follow such a

simple rule of thumb. This could be of importance, for

example, if the sensor network cannot be mounted on

the patient, but has to be further away.

3.3. Change in the Orientation

In order to study the orientation effect on the

CRLB, we evaluate the CRLB for estimation of a,b,c
for a scenario where the magnet rotates 90◦ toward the y

axis. In other words orientation changes gradually from

h0 = [0,0,1]T to h0 = [0,1,0]T . Figure 4 shows the re-

sults for such a scenario. It is clear that such a rotation,

results in a smaller CRLB for estimating a and b, and a

larger for estimating c. Such a result is due to the fact

that the flux of a magnet in the far field is maximum

along its magnetization vector [6].
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Figure 3.
√

CRLB for estimating a and c, as a
function of the distance c from the origin to-

gether with fitted curves proportional to c3 and
c5.

3.4. Two Parallel Planes

In order to observe the effect of the sensor net-

work constellation on the CRLB, two different setups

are studied as follows. Two planes are deployed with

16 sensors similar to Figure 1. In the first setup (Case

1), the two planes are located parallel to (x,y)- plane at

z = 0 and z = 0.6 m while in the second setup (Case

2), both planes are located at z = 0, i.e. two mag-

netic sensors are placed at each position. The mag-

net is considered to be moving on a straight line from

(−0.3,−0.3,0.3) to (0.3,0.3,0.3). Two orientations are

considered: h0 = [0,0,1]T and h0 = 1√
3
[1,1,1]T . Fig-

ure 5 shows
√

CRLB for estimating b for the two setups

together with
√

CRLB when using only one plane with

16 sensors. The results from the latter setup are close to

measurement results in [4, 3], and repeated here to em-

phasize that the theoretical bounds are close to practical

results. As expected, placing two sensors in the same

physical location decreases the CRLB compared to us-

ing only one. The reason is that the former provides

better noise averaging. However, a major improvement,

for both orientations, is obtained when two planes are

placed in two different locations on the z-axis. It should

be emphasized that the two distance matrices, which

contain the distances between the magnet and all of the

sensors in a plane, are identical. Therefore the magni-

tude of the fields measured by sensors in both planes

are also identical. However, the direction of the fields

are different. Thus designing sensor constellations such

that they experience flux diversity, seems to be a good

principle.

Note also from Figure 5, that the curve for Case
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Figure 4.
√

CRLB for estimation of a,b,c for a
rotating magnet.

2 is not symmetric around the origin when h0 =
1√
3
[1,1,1]T . This symmetry breaking happens because

the magnet is not orthogonal to the plane. However,

when using two planes, as in Case 1, a symmetric

and decreased CRLB results. Thus, in terms of net-

work constellation design, improved performance may

be achieved by distributing sensors to different planes,

which in practice means 3D sensor networks. The de-

sign principle may be summarized by two conflicting

criteria: (i) to place the sensors as far as possible from

each other and (ii) as closely as possible to the magnet.

4. Comparison to RSS-based localization

Since the introduction of the capsule endoscopy,

RSS-based localization has been the default technique.

It is claimed to reach 3 cm precision [1], but this ac-

curacy varies and can change for different people and

different parts of the GI track. Using ultra wideband

signals has proven to increase the accuracy [2] and to

make the localization accuracy less variable for all parts

of the digestive track. However the spatial correlation

in the shadowing puts a limit to achievable accuracy

which is independent of sensor numbers in the network

i.e. increasing number of sensors does not improve the

estimation accuracy. In contrast, magnet-based local-

ization is much less affected by the medium due to an

almost constant magnetic permeability of human tissues

µr = 1 throughout the body. As demonstrated in this pa-

per, magnet-based localization has the potential to reach

millimeter accuracy for distances below 30 cm and it

is also expected to maintain such an accuracy through-

out the digestive track [3]. In addition, magnet-based

localization enables estimation of the orientation of the

magnet which can be used for controlling the endoscope
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movements.

5. Conclusion

In this paper, the CRLB for the position of a mag-

netic sensor network has been presented. The results are

consistent with previous research and measurements.

The CRLB is a function of the distance and orientation

between the magnet and the sensors. The effect of dif-

ferent network constellations has been investigated and

we find that placing sensors cleverly increases the local-

ization accuracy. Comparing the results to other meth-

ods it is concluded that using magnet-based localization

of a capsule endoscope has great potential in terms of

accuracy, and it also enables estimating the orientation

of the capsule endoscope.

6. Appendix

Taking the derivative and mean from (4) results:

I jl =
1

σ2

N

∑
n=1

injl , (8)

injl =
∂Bnx

∂ζ j

∂Bnx

∂ζl

+
∂Bny

∂ζ j

∂Bny

∂ζl

+
∂Bnz

∂ζ j

∂Bnz

∂ζl

, (9)

so elements in FIM with respect to ζ vector can be cal-

culated as follows:

iaa =
(q+6mx)2+9(my+kx)2+9(mz+px)2

‖dn‖10 +
25q2x2( 36

25 x2+y2+z2)

‖dn‖14

− 6qx(5y(my+kx)+5z(mz+px)+2(q+6mx)x)

‖dn‖12 ,

(10)

iab =
9(mz+px)+3(my+kx)(3q−pz)

‖dn‖10 +
30q2xy(x2+y2+ 25

30 z2)

‖dn‖14

− 18q(my+kx)(x2+y2)+5qxy(4q−6pz)+15qz(x(kz+py)+y(mx+pz))

‖dn‖12 ,

(11)

iam = q+6mx

‖dn‖8 − 3x2(3q+6mx)+9xy(my+kx)+9xz(mz+px)

‖dn‖10

+
15qx2( 18

15 x2+y2+z2)

‖dn‖12 ,

(12)

iak =
3(my+kx)

‖dn‖8 − xy(8q+18mx)+9y2(my+kx)+9z2(mz+px)

‖dn‖10

+
15qxy( 18

15 x2+y2+z2)

‖dn‖12 ,

(13)

imm =
3x

‖dn‖8
+

1

‖dn‖6
imk =

3xy

‖dn‖8
, (14)

where,

x = xn −a, y = yn −b, z = zn − c, (15)

q = mx+ ky+ pz.

The other diagnonal elements of FIM can be calcu-

lated similar to iaa, imm and other off-diagonal elements

are calculated based on iab, iam, iak, imk.
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