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Abstract— This paper describes an adhesive sensor system
worn on the skin that automatically detects human falls. The
sensor, which consists of a tri-axial accelerometer, a microcon-
troller and a Bluetooth Low Energy transceiver, can be worn
anywhere on a subject’s torso and in any orientation. In order
to distinguish easily between falls and activities of daily living
(ADL), a possible fall is detected only if an impact is detected
and if the subject is horizontal shortly afterwards. As an
additional criterion to reduce false positives, a fall is confirmed
if the user activity level several seconds after a possible fall
is below a threshold. Intentional falls onto a gymnastics mat
were performed by 10 volunteers (total of 297 falls); ADL were
performed by 15 elderly volunteers (total of 315 ADL). The
fall detection algorithm provided a sensitivity of 99% and a
specificity of 100%.

I. INTRODUCTION

The world population is aging at an increasing rate. In
2011, there were 784 million people aged 60 years or over;
this age group will increase to 22% of the global population
in 2050 [1]. As the population ages, healthcare for the elderly
becomes increasingly important. Falling down is seen as one
of the major risk factors associated with aging. In fact, in
the United States, one in three persons aged 65 years or
over falls each year, but less than half report their falls
to healthcare providers [2]. Falls by the elderly can result
in moderate to severe injuries and can sometimes be fatal.
Prompt notification of falls to family members or healthcare
providers is essential for timely medical attention.

Several approaches have been described in the literature
for automatic fall detection. In [3], a piezoelectric shock
sensor and a mercury tilt switch are proposed to detect
impact and orientation of the subject. Multiple radio tags
placed at several locations on the body are used together with
machine learning methods in [4] for fall detection. The norms
of the acceleration vectors from trunk and thigh tri-axial
accelerometers were used for fall detection in [5]. References
[6], [7] use tri-axial accelerometers attached to a subject with
the z-axis in the vertical direction; falls are detected based
on the norms of the acceleration vectors and the acceleration
along the z-axis. A mobile application for fall detection using
the accelerometer in a smartphone is described in [8].

This paper describes a fall detection system based on a
tri-axial accelerometer attached to the subject’s skin using
an adhesive. The skin-contact sensor helps overcome issues
such as the device slipping out of a pocket or sliding along
a belt. Furthermore, continuous monitoring can be ensured,
including times when the subject changes clothes or is inside
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Fig. 1. Illustration of sensor placed on skin of torso.

a bathroom. Enhanced algorithm performance is achieved by
using impact as well as detection of a horizontal position
(which includes supine, prone and lateral positions) shortly
after the impact. In addition, a fall is confirmed by ensuring
that the activity level is below a threshold several seconds
after a possible fall. Moreover, a calibration procedure is used
to determine the acceleration vector of the vertical position
and to allow flexibility in sensor placement on the torso. The
fall detection algorithm provided a sensitivity of 99% and a
specificity of 100% on subjects participating in intentional
falls and activities of daily living (ADL).

II. MATERIALS AND METHODS

A. Skin-Contact Sensor

The sensor for fall detection consists of a Bosch BMA250
digital tri-axial accelerometer, a microcontroller and a Blue-
tooth Low Energy (BLE) wireless transceiver. The acceler-
ation data are sampled at 125 Hz and digitized to 10 bits,
with a maximum range of ±4g for each axis. As shown in
Fig. 1, the sensor is attached to the skin using an adhesive
and can be placed anywhere on a subject’s torso and in any
orientation. The positive z-axis of the tri-axial accelerometer
is from the sensor towards the skin (i.e., perpendicular to the
surface of the skin). In normal operation, the microcontroller
is used to execute the fall detection algorithm using the tri-
axial acceleration data, and the BLE transceiver sends an
alert if a fall is detected. However, for greater data visibility
in this study, the sensor continuously transmitted acceleration
data to a computer that executed the fall detection algorithm.

B. Intentional Falls and ADL

Intentional falls onto a gymnastics mat were performed
by 10 volunteers (7 male, 3 female). The falls listed in
Table I were performed three times by each subject. The total
number of falls was 297 since one subject did not perform
Fall Test Case 2. The subjects ranged in age from 23 to 46
years (32.7 ± 6.7 years), body mass from 52.6 to 90.7 kg
(75.4 ± 14.2 kg) and height from 1.57 to 1.83 m (1.72 ±
0.09 m). Most of the subjects fell onto pillows placed on the
mat to cushion the falls. For ADL, 15 elderly volunteers (10
male, 5 female) performed each ADL listed in Table II three
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TABLE I
INTENTIONAL FALLS

Test Case Description
1 Fall forward with legs straight
2 Fall backward with legs straight
3 Fall to the left with legs straight
4 Fall to the right with legs straight
5 Fall forward with knees bent
6 Falls backward with knees bent
7 Fall to the left with knees bent
8 Fall to the right with knees bent
9 Trip over a small object
10 Fall while sitting on a chair

TABLE II
ACTIVITIES OF DAILY LIVING (ADL)

Test Case Description
1 Sitting down and standing up from an armchair
2 Sitting down and standing up from a low stool
3 Sitting down and standing up from a bed
4 Lying down and standing up from a bed
5 Walking 10 m
6 Stretching while standing
7 Picking up an object from the floor

times at a community center. The ADL subjects ranged in
age from 63 to 91 years (74.3 ± 9.2 years), body mass from
61.2 to 98.4 kg (78.4 ± 10.4 kg) and height from 1.42 to
1.80 m (1.68 ± 0.11 m). The total number of ADL tasks was
315. The intentional falls and ADL were video recorded.

C. Fall Detection Algorithm

Since most subjects are horizontal after an injurious fall, a
main feature of the fall detection algorithm is identifying the
subject’s horizontal position after an impact. Furthermore,
most subjects lie on the floor for a significant time after a
serious fall. Hence, false positives are further decreased by
requiring a low activity level several seconds after a possible
fall. An activity metric is defined as a moving average of the
L1-norm of the bandpass-filtered acceleration vector.

The horizontal position is identified by computing the
angle of the acceleration vector shortly after an impact with
an acceleration vector obtained when the subject was vertical.
In order to compute this angle and provide flexibility in
sensor placement and orientation on the torso, a calibration
procedure is needed to determine the acceleration vector of
the vertical position before the fall detection algorithm is
executed. Several methods for calibration are possible. For
instance, implicit calibration can be achieved by measuring
the acceleration vector when the subject is walking. Alter-
natively, explicit calibration involves the subject notifying
the system (e.g., using a mobile phone) when he or she
is vertical. In case a subject has a stooped posture, the
algorithm uses impact alone for fall detection and disregards
the horizontal position requirement. A stooped posture is
inferred if the magnitude of the z-axis component of the
acceleration vector measured during calibration is greater
than a threshold.

Start

Obtain acceleration samples at 
sampling rate fs: an = (ax,n, ay,n, az,n)

Apply two single-pole IIR lowpass filters to an
Pole of Filter 1: p1 , Output: a1,n
Pole of Filter 2: p2 , Output: a2,n

Compute L1-norm of a1,n : a1,n = |ax,1,n| + |ay,1,n| + |az,1,n|

Obtain acceleration vector for 
calibration of vertical position: acal,n

a1,n < Al OR a1,n  > Ah ?

Wait Tw,1 seconds

|acal,n ⋅a2,n| < cosθp ||acal,n|| ||a2,n|| 
OR

|az,cal,n| > g sinθv?

No

Fall Detected

No

Yes

Yes

Apply IIR bandpass filter to an
Output: aact,n

Possible Fall Detected

Wait Tw,2 seconds

Compute L1-norm aact,n of aact,n

Compute moving average aact,avg,n of aact,n over time Tact

aact,avg,n > Aact ?

No

Yes

Fig. 2. Fall detection algorithm.

Fig. 2 is a flowchart of the fall detection algorithm.
The acceleration vector an = (ax,n, ay,n, az,n) consists of
the x, y and z components from the tri-axial accelerometer
obtained at the n-th time instant with sampling rate fs =
125 Hz. The acceleration vector an is passed through two
single-pole infinite impulse response (IIR) lowpass filters
with poles p1 = 13.8 Hz and p2 = 0.8 Hz, respectively, to
produce the vectors a1,n and a2,n. The vector a1,n is used
to track large changes in acceleration from impacts, while
the vector a2,n, which contains only very low frequencies,
is used to obtain stable measurements for horizontal position
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TABLE III
PARAMETERS FOR FALL DETECTION

Parameter Value
Al 0.3g
Ah 3.0g
Aact 0.2g
θp 60o

θv 20o

Tw,1 2 s
Tw,2 5 s
Tact 1 s

determination. Also, an IIR bandpass filter is applied to an
to produce the vector aact,n, which is a measure of activity
level. The bandpass filter is a sixth-order elliptic filter with a
passband ripple of 0.1 dB, a stopband attenuation of 100 dB
and a passband of 0.25 Hz to 20 Hz.

During the initialization of the algorithm, a calibration
vector acal,n is obtained via explicit calibration using a2,n.
In continuous operation, the L1-norm of a1,n is computed:

a1,n = ‖a1,n‖1 = |ax,1,n|+ |ay,1,n|+ |az,1,n|. (1)

For the activity level measurement, the L1-norm aact,n
of aact,n is computed; the activity metric is defined as
aact,avg,n, which is a Tact-second moving average of aact,n.

An impact is detected if a1,n < Al or a1,n > Ah. The
first condition detects the near “free fall” before impact,
while the second condition detects the large acceleration
magnitude caused by the impact. If an impact is detected,
the algorithm waits for a time period of Tw,1 seconds,
after which the horizontal position criterion is checked. The
horizontal position criterion is satisfied if the angle between
the calibration vector and a2,n is larger than θp, i.e.

|acal,n · a2,n| < cos θp‖acal,n‖2‖a2,n‖2 (2)

where the L2-norm of an is given by ‖an‖2 =√
a2x,n + a2y,n + a2z,n. As mentioned earlier, the horizontal

position criterion is ignored if a stooped posture is detected
during calibration, i.e., if |az,cal,n| > g sin θv , where θv = 0
corresponds to a completely vertical posture. A possible fall
is detected if the impact criteria are satisfied and either the
horizontal position criterion is satisfied or a stooped posture
is identified during calibration.

If a possible fall is detected, the algorithm waits for
another Tw,2 seconds, after which the activity criterion
aact,avg,n > Aact is checked. If the activity criterion is
satisfied, the subject was active after a possible fall; hence,
the possible fall is not upgraded to a fall. However, if
aact,avg,n ≤ Aact, the subject was most likely injured
because of a fall; hence, a fall is detected.

III. RESULTS

The fall detection algorithm was evaluated using the
parameters given in Table III. No fall was detected for all
315 ADL, resulting in 100% specificity. Two cases of ADL
recorded a possible fall, but no fall was detected because
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Fig. 3. Box plot of maximum acceleration magnitude for intentional falls.
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Fig. 4. Box plot of maximum acceleration magnitude for ADL.

of the activity criterion. Out of the 297 intentional falls
performed, 294 were correctly detected, which corresponds
to a sensitivity of 99%.

Figs. 3 and 4 are box plots of the maximum value of
the acceleration magnitude a1,n for intentional falls and
ADL, respectively. For the intentional falls, the maximum
acceleration magnitude ranges from 2.4g to 11.0g. The
median of the maximum acceleration magnitude is larger
when the legs are straight compared to when the legs are
bent for falls forward, backward and to the sides. For ADL,
the maximum acceleration magnitude ranges from 1.5g to
4.2g.

A box plot of the angle between the calibration accelera-
tion vector and the z-axis is shown in Fig. 5 for ADL. The
angle ranges from −9.4o to 54.4o. Fig. 6 is a box plot of
the angle between the calibration acceleration vector (acal,n)
and the final acceleration vector (a2,n) Tw,1 seconds after
impact for the intentional falls. The angle ranges from 64.2o

to 114.8o. A box plot of the activity measure aact,avg,n Tw,2

seconds after a possible fall is given in Fig. 7 for intentional
falls. The activity measure ranges from 0.037g to 0.198g.

IV. DISCUSSION AND CONCLUSION

It can be seen from Figs. 3 and 4 that there is consid-
erable overlap in the maximum acceleration magnitude for
intentional falls and ADL. Therefore, fall detection based
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Fig. 5. Box plot of angle between calibration acceleration vector and z-axis
for ADL.
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Fig. 6. Box plot of angle between calibration acceleration vector and final
acceleration vector Tw,1 seconds after impact for intentional falls.

on acceleration magnitude alone does not provide sufficient
sensitivity and specificity for a skin-contact sensor worn on
the torso. The horizontal position detection after impact and
activity criterion provide necessary additional information for
fall detection. It can be seen from Fig. 6 that an angular
tolerance of 30o from vertical (i.e., θp = 60o) accounts for
the range of horizontal positions after impact. As evident
from Fig. 7, the activity measure threshold of 0.2g was found
to capture all the cases of intentional falls while increasing
the specificity of the fall detection algorithm.

Two of the three falls that were not detected were
Fall Test Case 8 (fall to the right with knees bent) from two
different subjects, where the maximum acceleration magni-
tude was 2.9g; the other undetected fall was Fall Test Case 7
(fall to the left with knees bent) from a third subject, where
the maximum acceleration magnitude was 2.4g. Since the
subjects fell onto pillows placed on the gymnastics mat,
it is predicted that the maximum acceleration magnitudes
recorded in this study for intentional falls are lower than the
the corresponding quantities measured in spontaneous falls
on hard surfaces. Hence, the sensitivity of the fall detection
algorithm is expected to increase in actual usage.

In conclusion, detection of a horizontal position after
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Fig. 7. Box plot of activity measure for intentional falls Tw,2 seconds
after a possible fall.

impact and fall confirmation based on an activity measure
provide enhanced sensitivity and specificity for automatic
fall detection using a sensor worn on the torso. Future
work includes conducting additional ADL and fall test cases,
preferably replacing pillows and gymnastics mats with hel-
mets and limb protection to obtain more accurate impact
data. Additional areas of research include the effect of sensor
position on the torso and power consumption and latency of
the sensor for real-time fall detection.

ACKNOWLEDGMENT

The author would like to acknowledge S. Mostafavi for
video recording and assisting with the ADL and fall tests.
The author wishes to acknowledge N. Ferdosi for helpful
discussions and assisting with the ADL tests. The author
thanks R. Wedell, Director of the Cardiac Therapy Founda-
tion of the Midpeninsula for providing access to facilities to
conduct the ADL tests.

REFERENCES

[1] United Nations, Department of Economic and Social Affairs, Pop-
ulation Division (2011), World Population Prospects: The 2010
Revision, Highlights and Advance Tables. Working Paper No.
ESA/P/WP.220.

[2] Centers for Disease Control and Prevention,
http://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html

[3] G. Williams, K. Doughty, K. Cameron and D. A. Bradley, “A smart
fall and activity monitor for telecare applications,” in Proc. 20th
Ann. Int. Conf. IEEE Eng. Med. Biol. Society, Hong Kong SAR,
China, 29 Oct.–1 Nov. 1998.
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