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Abstract— We present an active contour framework for seg-
menting neuronal axons on 3D confocal microscopy data. Our
work is motivated by the need to conduct high throughput ex-
periments involving microfluidic devices and femtosecond lasers
to study the genetic mechanisms behind nerve regeneration
and repair. While most of the applications for active contours
have focused on segmenting closed regions in 2D medical and
natural images, there haven’t been many applications that have
focused on segmenting open-ended curvilinear structures in 2D
or higher dimensions. The active contour framework we present
here ties together a well known 2D active contour model [5]
along with the physics of projection imaging geometry to yield a
segmented axon in 3D. Qualitative results illustrate the promise
of our approach for segmenting neruonal axons on 3D confocal
microscopy data.

I. INTRODUCTION
Understanding the genetic mechanism behind how neu-

rons in the peripheral nervous system repair themselves
after injury and how they maintain their axonal structure
and function over time holds the key to developing better
treatments for neurodegenerative diseases and nerve injuries.
This goal has led to recent advances in developing state-
of-the art infrastructure using microfluidic devices and fem-
tosecond lasers [1], [2] for performing axotomy on model
organisms such as the nematode C. elegans. Microfluidic
devices enable easy and efficient handling of C. elegans for
axotomy and imaging without the need for additional im-
mobilizing chemicals, while femtosecond lasers have shown
to be valuable as a precise cutting tool for severing axons
in C. elegans without heating or damaging the surrounding
cells. These devices combined with confocal microscopy
imaging allow for a study of axonal repair and the associated
genetic mechanisms. However, to be able to draw meaning-
ful statistical conclusions, it is necessary to perform high-
throughput experiments involving many C. elegans worms.
High-throughput experiments necessitate automated analysis
of the 3D confocal microscopy imaging data after axotomy in
order to quantify changes such as re-growth and reconnection
that take place along the severed axon. This has resulted in
the development of image analysis techniques for quantifying
neuronal morphology, e.g., [3] and [4].

In this paper, we present an active contour framework
for segmenting neuronal axons, which manifest as open-
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Fig. 1. Proposed framework.

ended curvilinear structures on 3D confocal microscopy
data. Active contour models, also known as snakes [6],
[7], [8], are commonly employed to represent and track
objects of interest in natural and medical images. While the
traditional application of active contour models has been the
representation of closed regions in images, they have been
applied in a few applications involving segmentation of open-
ended curvilinear structures [9], [10], particularly in 3D.
Finding and modeling open-ended structures such as axons
involves unique challenges such as not knowing the length
of the axon a priori. We address these questions by joining
a well known 2D active contour model [5] with projection
imaging geometry to yield a 3D segmentation of the axon.
Preliminary qualitative results illustrate the promise of our
approach for segmenting neuronal axons on 3D confocal
microscopy data.

II. PROPOSED FRAMEWORK

The proposed framework is illustrated in Fig. 1. We next
describe these steps in detail.

A. Forward Projection

Let f ∈ RN represent the vectorized 3D confocal mi-
croscopy data, where N is the total number of voxels. Then,
for noise-free data, the forward model can be written as:

g = Hf, (1)

where g is a vector that represents the projection images,
and H is the projection matrix, also known as the forward
operator. The projection matrix H essentially models the
imaging process. For example, the coefficients of H could
model the attenuation and linear blur mechanisms inherent
in the imaging. The coefficients of H serve as weights that
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describe the contribution of each voxel in the data f to a
particular projection gi. We assumed the Radon model while
designing the projection matrix H , i.e., only those voxels that
lie along a line defined by the coefficients of H contribute
to the projection data.

B. 2D Active Contour Model

We next deployed an open-ended parametric 2D active
contour on each projection image generated by the forward
projection process. A parametric active contour is defined
as the parametric curve v(s) = [x(s), y(s)]T , which evolves
through the image to minimize the following energy func-
tional [6]:

E(v(s)) =
∫ 1

0

[
1
2
(α|v′(s)|2 + β|v′′(s)|2) + Eext(v(s))

]
ds

(2)
where v′(s), and v′′(s) are first and second derivatives of
v(s) that represent continuity and tautness of the curve,
respectively. The weighting terms α and β determine how
much importance is placed on the continuity and the taut-
ness of the curve, respectively. The terms v′(s), and v′′(s)
contribute to the internal energy of the contour, i.e., the
energy that is inherent in the contour. The term Eext(v(s))
determines the external energy typically arising from image
features such as edges and is meant to draw the evolving
contour towards the boundaries of the object of interest.
Typical choices of the external energy include variants of
the image gradient [7], [6]. At a local minima of the
evolving curve, the Euler-Lagrange force balanced equation
Fint+Fext = 0 is satisfied, where Fint = αv′′−βv′′′′ is the
internal force controlling the curve’s continuity and tautness,
while Fext = −∇Eext(v) is the external force arising from
image features such as edges, respectively.

We use the vector field convolution (VFC) formulation
for the external energy term [5]. In the VFC formulation, a
standard feature map derived from the image is convolved
with a user-defined vector field kernel. A requirement on the
vector field kernel is that all the vectors in the field should
point towards the kernel origin. Hence, when the kernel
origin coincides with a feature such as an object boundary
or a curvilinear structure, all the vectors in the vector field
point towards this feature, causing the evolving contour to
be deformed towards the feature. The VFC formulation also
provides a large capture range for subtle features of interest
and is robust to noise [5].

The feature maps that were convolved with the vector field
kernel were derived from the projection images by using a
steerable ridge detector that responds to curvilinear structures
[11]. The axon seen on each projection image was enhanced
on the feature map, as illustrated in Fig. 2. It should be
noted that any good off-the-shelf ridge or line detector could
be used to derive the feature maps. The only criterion to be
satisfied is that the curvilinear structures be enhanced and
the background be suppressed.

Fig. 2. Left: A projection image depicting the axon. Right: The corre-
sponding feature map depicting the enhanced axon.

C. Active Contour Initialization and Growth

One of the challenges in using a parametric active contour
model is the initialization of the curve. We adopt a semi-
automatic approach for active contour initialization with a
focus on minimal user interaction. Towards this goal, we
define the initial curve on each projection image using only
two manually marked points on the 3D data that have been
projected onto the 2D space. Our approach is driven by the
observation that an impulse in a higher dimensional space
remains an impulse when projected onto a lower dimensional
space. For example, consider the projection of a Dirac
singularity centered at (x0, y0) in 2D, i.e. the projection of
δ(x− x0, y − y0):

Pθ(t) =
∫ +∞

−∞
δ(x− x0, y − y0)δ(xcosθ + ysinθ − t)dxdy

= δ(x0cosθ + y0sinθ − t),
(3)

where Pθ(t) is the 1D projection that is the Radon transform
of the function δ(x− x0, y − y0). It is immediately evident
from (3) that the 1D projection of the 2D impulse is also
an impulse, which is located at t = x0cosθ+ y0sinθ. Using
this observation, we manually marked only two end points
of each active contour that had to be initialized on the 3D
data. These two end points contained in a 3D point volume
were then projected onto 2D via the same forward projection
process used for the imaging data, as described earlier. The
resulting point projections were then automatically processed
to retain only the two non-neighboring strongest impulses on
each projection image. The initial curve of the active contour
was then defined as a straight line segment between these two
points on each projection image.

Once the active contour is initialized, the curve deforms
iteratively using well known discrete-time coordinate update
equations derived from a finite-difference approximation
of the Euler Lagrange equation [5]. However, a problem
encountered when segmenting open-ended curvilinear struc-
tures such as axons, is that the length of the structure is
not known a priori. To solve this problem, we adopt a
scheme that we have used previously to segment open-ended
curvilinear structures on mammograms [9]. Essentially, we
let the active contour curve alternately grow and deform. To
begin with, the curve is defined as a straight line segment
between the two point projections. The curve then deforms
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Fig. 3. Growing active contour. top left: initial curve; top right: after 5
iterations; bottom left: after 15 iterations, bottom right: after 25 iterations.

under the influence of its internal and external forces for
a fixed number of iterations. The deformation is followed
by extending the curve along one of it’s end points in
the direction of the tangent computed at that end point by
introducing another short line segment of a predefined length.
This new segment then deforms under the influence of its
internal and external forces for a fixed number of iterations.
The process of extension and deformation repeats until a
stopping criterion is met or a certain number of iterations
have been completed. We do not use a stopping criterion
but rely on a fixed number of iterations, though a stopping
criterion based on factors such as curvature could easily be
incorporated. For instance, in our previous work [9], we
have used a curvature based stopping criterion for open-
ended active contours, where the growth of the contour was
terminated at a point where the curvature exceed a 30◦ limit.
The predefined length of each extended straight line segment
was set to an arbitrarily chosen value of 10 pixels and the
number of iterations of extension and deformation was set
to 25. Fig. 3 illustrates four iterations of the growing active
contour along an axon trajectory on one of the projection
images.

D. 3D Reconstruction of the Axon

Once the 2D active contours have been deployed on each
projection image and the axon has been segmented in 2D,
reconstruction of the 3D axon is performed using the simple
back-projection operator HT , i.e.

fseg = HT gseg, (4)

where gseg is the vectorized projection data containing non-
zero values only along the active contour coordinates. The
result of this operation yields the segmented axon in 3D.

III. EXPERIMENTS AND RESULTS
The data set for this study comprised of a stack of 51

confocal microscopy images depicting the anterior longitu-
dinal microtubule (ALM) - a touch receptor neuron in the C.
elegans worm. The theoretical resolution of the data was 149

Axotomy region 

Original axon 
trajectory 

Re-growth trajectory 

Region of study 

Fig. 4. Two pairs of initial active contour end-points on a projection image.
The blue points represent one pair, while the red points represent the other.
Also illustrated are the axotomy region and the two trajectories of the axon
pre-and post-axotomy.

nano-meters in the x-y plane, while the resolution along the
optical axis of the microscope (z-direction) was 529 nano-
meters. Each image was 2048 × 2048 pixels in dimension
with 8 bits per pixel. Hence, the dimensions of the 3D
volume was 2048×2048×51 voxels. For efficient processing,
we considered a cropped 3D volume that best depicted the
axon. The dimensions of the cropped volume was 1549 ×
901×28 voxels. The forward projections were then computed
on the cropped volume. For the forward projection Radon
model, we considered 91 angular increments from -45 to + 45
degrees. Each projection image was further sub-sampled by
a factor of two to accelerate processing. The active contours
and the subsequent 3D reconstruction of the segmented axon
were then carried out on the sub-sampled projections. We
manually initialized two pairs of end points on a 3D slice best
depicting the region where the axon had been severed. These
two pairs of points were then projected onto the projection
space using the same forward projection model used for the
imaging data. The projected points are illustrated in Fig. 4
along with the region where the axon was severed. Also
illustrated in Fig. 4 are the original and axon re-growth tra-
jectories pre- and post-axotomy. The 3D rendering of the seg-
mented axon trajectories is illustrated in Fig. 5. We used the
open source software VolRover (http://cvcweb.ices.
utexas.edu/cvcwp/?page_id=100) to perform 3D
volume rendering and visualization. It is evident from Fig. 5
that the two active contours were able to capture, segment,
and accurately represent the original axon trajectory as well
as the re-growth trajectory after axotomy.

IV. CONCLUSION

We have presented a framework for reconstructing and
representing neuronal axons in 3D from confocal microscopy
imaging data. The basic framework can be extended to
represent open-ended curvilinear structures on other multi-
slice imaging modalities that follow the principles of projec-
tion imaging geometry. Future work includes a quantitative
validation of the framework, and modeling the repair and
regeneration of multiple 3D neuronal axons from confocal
microscopy images acquired after axotomy on a large num-
ber of C. elegans worms.
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Fig. 5. 3D rendering and visualization of the active contours.
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