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Abstract— One of the key challenges in three-dimensional 

(3D) medical imaging is to enable the fast turn-around time, 

which is often required for interactive or real-time response. 

This inevitably requires not only high computational power but 

also high memory bandwidth due to the massive amount of 

data that need to be processed. In this work, we have developed 

a software platform that is designed to support high-

performance 3D medical image processing for a wide range of 

applications using increasingly available and affordable 

commodity computing systems: multi-core, clusters, and cloud 

computing systems. To achieve scalable, high-performance 

computing, our platform (1) employs size-adaptive, 

distributable block volumes as a core data structure for 

efficient parallelization of a wide range of 3D image processing 

algorithms; (2) supports task scheduling for efficient load 

distribution and balancing; and (3) consists of a layered 

parallel software libraries that allow a wide range of medical 

applications to share the same functionalities. We evaluated the 

performance of our platform by applying it to an electronic 

cleansing system in virtual colonoscopy, with initial 

experimental results showing a 10 times performance 

improvement on an 8-core workstation over the original 

sequential implementation of the system. 

I. INTRODUCTION 

In clinical practice, there is an increasing demand for fast 
turn-around time in obtaining high quality, multi-dimensional 
images [1]. In particular, real-time 3D imaging and post-
processing thereof is an area with promising potential for a 
wide range of medical applications.  

One of the key challenges in high-speed 3D medical 
image processing (3D MIP) is that it requires high 
computational power and data throughput. In addition to the 
complexity, the main reason why 3D imaging algorithms are 
time-consuming is the large amount of data to be processed, 
which often reaches several gigabytes (GB) per examination 
for practical problems.  Further, the data are often needed to 
be processed repeatedly because many algorithms are 
iterative in nature, and the data addressing and accessing 
patterns in these algorithms does not allow us to use simple 
data distribution approaches due to their high correlation and 
dependence to the neighboring areas. 
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Various efforts have been made to achieve the required 
high performance through careful, hardware-based 
approaches such as application-specific integrated circuits 
(ASICs), field programmable gate arrays (FPGAs) [2], and 
Graphical Processing Units (GPUs) [3]. While these 
approaches have yielded promising performance for the 
applications that they intend to process, they are not directly 
applicable to a wide range of 3D MIP applications required in 
clinical practice. 

Increasingly available high performance multi-processor 
systems provide a promising avenue to address the above 
challenges and have the potential to be adaptive to the 3D 
MIP in clinical practice. Their availability in multiple 
configurations, such as stand-alone multi-core systems, 
clusters, and cloud computing systems, allow additional 
flexibility that could facilitate adoption in large and small 
clinical settings.  

In this work, therefore, we designed a software platform 
called high-performance 3D imaging software (HPC-3D) 
platform for a rapid development of high-speed 3D imaging 
applications. The platform has the following characteristics. 

First, to address the challenge of large data 
communication between processors, we employed a size-
adaptive, distributed block volume structure [4] that 
minimizes the data storage, transfer and reduce computation, 
as a core data structure of the HPC-3D platform (Section 
II.A). Second, to load balance tasks among computing units 
and to avoid data locks that may restrict the performance of 
applications, we developed an efficient task scheduling 
method [5] that is suitable for a wide-range of 3D MIP 
algorithms (Section II.B). Third, to enable the maximum 
applicability to a wide range of 3D MIP algorithms, we 
designed the HPC-3D platform as layered parallel software 
libraries with reusable software components at each layer. 
These layers consist of (a) a block volume library that 
provides a mechanism to decompose a volume into 
overlapping sub-volumes and non-overlapping blocks, and 
distributed them to nodes for processing, and (b) a parallel 
image processing library that provides reusable parallel 
operations (Section II.C). 

To evaluate the performance of the HPC-3D platform, we 
implemented an HPC electronic cleansing (EC) method by 
parallelizing the computationally intensive steps in our 
previously developed structure-analysis EC (SA-EC) method 
[6] on the platform, and compared its execution speed with 
that of the SA-EC (Section V).  

II. HIGH-PERFORMANCE, SCALABLE COMPUTING 

PLATFORM: ARCHITECTURE DESIGN 

A.  Distributed Block Volume Structure 
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The HPC-3D platform employs distributed block volume 
structures (DBVS) as the fundamental data structure to 
enable efficient parallelization and optimization of a wide 
range of 3D MIP algorithms. 

Fig. 1 illustrates the schematics of the DBVS. The 
volume data are divided into non-overlapping blocks, or 
grids, of voxels. The size of the block can be adapted to 
optimize for performance and parallelism. The cache effect 
can be tailored to fit the needs of the application or data. 
Blocks are accessible through an indexed list and they can be 
distributed to computing units on a multi-core, a cluster, or a 
cloud system. The background block is a spatially marked 
block that consists of the voxels that have been determined to 
be the background of a 3D image. The background block is 
logically shared among blocks for memory and 
computational efficiency, and it is replicated only when 
parallel processing of the blocks that share the same 
background is required. 

The DBVS provides the following advantages: (1) it 
segregates background voxels into a shared background 
block for memory efficiency, and thus, it allows obviating 
unnecessary computation and data communication, which 
can be substantial in 3D MIP steps in which a large number 
of blocks are background. (2) A block naturally serves as a 
data unit to be distributed for parallel processing. (3) The 
DBVS supports an adaptive block size to optimize for 
parallelism and performance. DBVS provides adjustable 
computation data unit per process in order to avoid high 
overhead caused in repeated iterations or unbalanced 
workload among processes. This is particularly useful for 3D 
imaging processing algorithms that are data and data 
communication intensive, as the performance of such 
algorithms are extremely sensitive to the efficient use of 
memory and cache. 

B.  Parallel Task Scheduling Scheme 

It is critically important to load-balance tasks among 
computing units and avoid data locks that yield suboptimal 
performance. The DBVS provides a reference to each block 
about its read/write/process status. To minimize the data wait 
and lock as well as to maximize local data reuse, we employ 
a task scheduling method that is suitable for 3D MIP 
algorithms, called a wave-front parallelism on volume block 
tiles [5]. Wave-front parallelism uses a scheduling algorithm 
that the local reuse of the data is exploited and the 
dependences are satisfied to avoid data lock [5].  

Wavefront method can avoid wait while increasing data 
reuse for algorithms that involve multiple layers of iterations 
and the effect area from last iterations. Many of the 3D MIP 
algorithms contain nests of loops, in which the same data are 
reused in successive iterations of the outermost loop. Also, 

many of the 3D imaging algorithms process voxels that have 
dependences only on the voxels within the block and possibly 
the neighboring blocks. These can be achieved by processing 
various portions of the blocks, block slabs, or block tiles in 
parallel. In cases where locks are needed, it was often 
possible to break the iteration space into contiguous blocks, 
block slabs, or block tiles, and then process these units with 
intervals that avoided the need of lock. 

Fig. 2 shows an example of block volume slabs with 
dependence on one neighboring block slab. The scheduling is 
applied to a slab of blocks by processing these interacting 
block slabs within an outer interval loop. A middle loop can 
be parallelized by distributing of blocks to different 
computing units, assuming that there is no shared unit across 
iterations of this loop, and hence does not need to be locked. 
The most inner layer is for the computing unit to process and 
reuse the local data independent of the other units. 

 C.  Layered Parallel 3D Imaging Libraries 

The software layers in HPC-3D are designed for easy 
parallelization of a wide range of 3D MIP algorithms. Fig. 3 
shows the architecture of the software layers for the platform. 
The bottom layer abstracts the hardware platform, enabling 
targeting of any of the multi-core CPU-based computer 
system, cluster of computers, or cloud computing. 

 The rest of the layers are 3D MIP software layers that 
provide fundamental mechanisms for high-performance 
parallel processing. The second layer from the bottom is a 
block volume library that provides a mechanism to 

 

 
Figure 2: Distribution of block volume slabs. 
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Figure 1: Distributed block volume structure. 

 

 
Figure 3: Parallel software library layers in the HPC-3D 

platform. The right shows the detailed layer of the EC 

application layer. 
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decompose a large volume into overlapping sub-volumes and 
non-overlapping blocks, and distribute them to computing 
units for parallel processing. The third layer from the bottom 
is a parallel image processing library that provides reusable 
operations such as parallel region growing, parallel filtering 
methods such as Gaussian and Hessian filtering, and parallel 
histogram analyses. The top layer consists of application-
specific algorithms such as the SA-EC method. The right of 
the diagram shows example components for the SA-EC (see 
Section III for details).  

Parallelization of the image processing library employed 
Microsoft Parallel Patterns Library (PPL). Many of the 3D 
MIP algorithms require a large amount of data and iterative 
computation. Our parallelization takes these factors into 
account and adds special speed up on the commonly used, 
computationally expensive algorithms. For efficiency, we 
created these functions on top of the Intel Integrated 
Performance Primitives (IPP). 

III. APPLICATION TO VIRTUAL COLONOSCOPY 

CT colonography, also known as virtual colonoscopy, is a 
viable alternative to optical colonoscopy for diagnosis of 
colorectal cancers [7]. Non-cathartic CT colonography 
(ncCTC) is an emerging CTC examination, in which no 
cathartic agent is used in the bowel preparation [7]. A broad 
adoption of ncCTC is regarded as the most promising next-
generation CTC technique for screening of colorectal cancer 
[7]. However, the caveat is that ncCTC introduces a large 
quantity of solid stool that adheres to the colonic mucosa, 
which obscures small lesions, and distracts readers from 
focusing on small polyps. 

To improve interpretation, tagged feces must be 
segmented and removed from the CTC images. Such an 
approach, called electronic cleansing (EC), is a promising 
approach for “virtually cleansing” of the colon [6] to reveal 
colonic lesions submerged in the feces. Cai el al. [6] have 
developed an EC scheme for ncCTC, called a structure-
analysis EC (SA-EC) scheme, which effectively removes the 
solid stool in ncCTC. The four major steps in the SA-EC 
scheme are shown in Fig. 4. SA-EC requires a large amount 
of data (typically, approximately 1 GB per patient), and its 
original implementation took approximately 30 minutes per 

case to process [6]. 

We thus implemented the SA-EC scheme on the HPC-3D 
platform to develop a high-performance electronic cleansing 
(HPC-EC) scheme by parallelizing the computationally 
intensive steps in the SA-EC scheme as described in the next 
sections. The HPC-EC program was implemented on 
Windows Server 2008 with native C++ using Visual Studio 
2010 and Intel Parallel Studio XE development environment.    

A. Parallel Segmentation of the Colon 

The colon segmentation process separates the colonic 
lumen from other parts of the body on CTC images to define 
the region of interest and to reduce the use of memory and 
computational power required in the later stages (Figure 4, 
Step 1). 

The core method in the colon segmentation process is the 
region growing [8]. Thus, the use of the parallel region 
growing method in the second software layer in HPC-3D (see 
Section II.C) can substantially reduce the computation time 
required for this process, because it takes advantage of bit-
wise and computing-unit parallelization in the parallel region 
growing algorithm. 

B. Parallel Structure Analysis of the Colonic Lumen 

In the structure analysis step of SA-EC, characteristic 
soft-tissue structures in the colonic lumen, such as the 
haustral folds and polyps, are recognized and differentiated 
from stool based on their local morphology that are 
characterized by the eigenvalues of a 3D Hessian matrix  [8]. 

In this step, Gaussian and Hessian filters are used 
multiple times to compute the local morphologic features.  
This process is both computationally expensive and memory 
intensive, because nine first and second derivatives are 
computed in this process. We thus employed the parallel 
Gaussian and Hessian filters in the second software layer in 
HPC-3D (see Section II.C) to speed-up this step. 

C. Parallel Local Roughness Analysis 

Local roughness, which is defined as the sum of the 
differences between the volumetric curvedness across scales, 
is used to differentiate an air-tissue-tagging layer from an air-
tagging boundary [6]. The curvedness calculation at different 
scales involves repeated computation of Gaussian 
derivatives. We thus employed the parallel Gaussian 
derivatives filters in HPC-3D to speed-up this process. 

D. Parallel Dynamic-Threshold Level Set Method 

Dynamic-threshold level set method [9] is used to 
segment and remove the tagged fecal materials for recovering 
colonic wall, while preserving submerged soft-tissue 
structures such as polyps and folds. This step was performed 
by first initializing the level set front with the tagged regions 
that are segmented by thresholding of the image with a pre-
defied CT numbers; then, the level set front is evolved by use 
of a speed function that was designed to stop the evolution of 
the front from evolving at the boundary between the tagged 
regions and the soft-tissue structures or the colonic wall, thus 
recovering the colonic wall. 

 We employed the wave-front parallel scheduling 
(Section II.B) to the dynamic-threshold level set method for 

 

 
Figure 4: The four major steps in the structure-analysis 

electronic cleansing process. 
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efficient parallelization of this step. In this approach, seeds in 
the initial level set front with a pre-defined interval block 
distance (a block set that is not interacting during a pre-
defined iteration periods) are computed in parallel. Fig. 5 
illustrates a situation in that some potential tagging areas in 
the block sets with no interaction are processed in parallel in 
the first step, while the potential tagged areas in other non-
interacting block sets are processed in parallel in the next 
step. The process will be repeated until the level set method 
converges. 

IV. EXPERIMENTAL RESULTS 

We evaluated the execution speed of the HPC-EC scheme 
based on computational workstations equipped with 2-, 4-, 
and 8-core CPUs (Intel Xeon series, 3GHz) and 8 GB 
memory, and compared their execution time with that of the 
original, sequential SA-EC scheme. 

Table I shows the preliminary results based on 5 sets of 
CTC image data (512x512x340-600 voxels in size). The 
average execution times were 28 min and 2.6 min on the 
original SA-EC and the HPC-EC, respectively, indicating 
that the HPC-3D platform enabled a 10-fold reduction in 
computing time (Table I).  

Individual steps in SA-EC were also speeded up at a 
similar or greater proportion: Colon segmentation: 33-fold 
reduction (5 min to 9 sec); structure analysis: 12-fold 
reduction (4 min to 21 sec); roughness analysis: 12-fold 
reduction (7 min to 35 sec); dynamic level set method: 8-fold 
reduction (12 min to 90 sec). These results indicate that HPC 
is a useful platform for enabling near-real time computation 
in the EC processes. 

TABLE I.  COMPARISON OF EXECUTIN TIME IN HPC-EC AND SA-EC 

# of cores 

EC Steps 

Colon 

segmentation 

(sec) 

Structure 

analysis 

(sec) 

Roughness 

analysis 

(sec) 

Dynamic 

Level Set 

(sec) 

Total time 

(sec) 

SA-EC 300 240 420 720 1680 

H
P

C
-E

C
 2 cores 21 67 108 181 377 

4 cores 14 36 47 115 212 

8 cores 9 21 35 90 155 

 

The results also indicate that the total and individual 
execution times reduces as the number of CPU cores 
increases, indicating the high scalability of the HPC-EC and 
the HPC-3D platform (Fig. 6). However, the reduction of the 
execution time was not linear to the number of cores mainly 

because of data communication overhead and memory access 
bottleneck.  

V. CONCLUSION 

We have developed a software platform, called HPC-3D, 
designed to support high-performance 3D MIP using 
commodity parallel computing systems. Preliminary 
evaluation of the performance showed that the platform was 
effective in substantially reducing the execution time of 
computationally intensive processes in EC for CTC. It is thus 
expected to be useful for high-performance computing 
platform for 3D MIP. 
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Figure 5: Parallelization of dynamic level set method. 

 

 
Figure 6: Reduction of execution time as the number of 

CPU core changes in HPC-EC. 
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