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Abstract— The automatic segmentation of abdominal organs
is a pre-requisite for many medical applications. Successful
methods typically rely on prior knowledge about the to be
segmented anatomy as it is for instance provided by means of
active shape models (ASMs). Contrary to most previous ASM
based methods, this work does not focus on individual organs.
Instead, a more holistic approach that aims at exploiting inter-
organ relationships to eventually segment a complex of organs
is proposed. Accordingly, a flexible framework for automatic
construction of multi-object ASMs is introduced, employed
for coupled shape modeling, and used for co-segmentation
of liver and spleen based on a new coupled shape/separate
pose approach. Our first results indicate feasible segmentation
accuracies, whereas pose decoupling leads to substantially bet-
ter segmentation results and performs in average also slightly
better than the standard single-object ASM approach.

I. INTRODUCTION
The upper abdomen presents a wide spectrum of different

medical diagnoses. Correspondingly, the segmentation of
the important organs that are located in that area, such as
liver, spleen, kidney etc. is an issue physicians are often
faced with in clinical routine. Such segmentations are for
instance useful for computer-based surgery planning, are
supportive for diagnosis and monitoring, and can also be
used to guide radiation treatments. Commonly, computed
tomography (CT) images are acquired for these purposes.
These have the problem that the tissue of different organs
are represented with quite similar intensity values in the
image data. Additionally, pathologies such as tumors and/or
previous resections could alter the organs of the individual
patient significantly.

The mentioned difficulties makes automatic segmentation
of abdominal organs a challenging task that has been exten-
sively studied in recent years. However, the algorithms that
have been developed in this context are often tailored for
the segmentation of a particular organ like for instance the
liver (cf. e.g. [1] and references therein). At this, statistical
shape models (SSMs) [2] have proven to be a well-suited
tool for shape guided segmentation of individual abdominal
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organs. Indeed, in the MICCAI 2007 liver segmentation chal-
lenge [1], the two best performing automatic segmentation
methods [3], [4] are based on this very approach.

On the other hand, there are some works that aim at
segmenting two or more abdominal organs based on proba-
bilistic atlases (e.g. [5], [6], [7]). These approaches have
shown to be able to provide good segmentation results.
Concerning the shape model based approach there are some
works that use multi-object SSMs for co-segmentation of
different bones [8], [9], brain regions [10], [11] or the epi-
and endocardium [12]. However, the much more variable
abdominal region has only be addressed in terms of statistical
location models [13], i.e. without learning shape variability,
or for very local sub-regions of the liver [14], or without
benchmarking segmentation results quantitatively [11]. In-
deed, the latter aspect got only limited attendance inasmuch
as a quantitative evaluation that coupled SSMs can help to
improve segmentation results compared to the segmentation
of individual organs is until now only conducted for directly
connected structures [12], [14] or moderately variable brain
regions [10].

Hence, it is quite not clear whether co-modeling of organs
like e.g. liver and spleen, which are known to be highly
variable and not necessarily connected at all, can actually
help to improve segmentation results or if it is more reason-
able to segment these organs individually. In order to shed
some light onto that question we (i) automatically construct
a multi-object SSM comprising liver and spleen using the
current quasi-standard for establishing correspondence, (ii)
use this model for co-segmentation of both organs, thereby
proposing a coupled shape/separate pose approach, and (iii)
compare our results with the standard approach in which
each organ is segmented individually.

II. MATERIALS AND METHODS
A. Statistical Shape Modeling

Let {Si,o ⊂R3; i= 1, . . . ,ns, o= 1, . . . ,no} be a set of ns ∈
N+ training samples each consisting of no ∈ N+ individual
objects. By sampling the objects at corresponding positions
using npo ∈ N+ landmarks, we obtain the shape vectors
xi,o ∈ R3npo . These are aligned in a common, normalized
coordinate frame. At this, we first align all objects at once
to remove global pose differences. Subsequently, we correct
for local pose differences by aligning the objects individ-
ually [15]. Then, for each sample i, the shape vectors of
all objects are concatenated to form a coupled shape vector
xi ∈ R3np . We calculate the mean shape x̄ = ns

−1
∑

ns
i=1 xi as

well as the nm ∈ N eigenvalues {λm; m = 1, . . . ,nm} and
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Fig. 1. Coupled shape variability of the multi-object shape model comprising liver and spleen. The displayed shape instances are generated by independently
varying the 1st to 3rd mode by -/+ three times the respective standard deviation. In each case the remaining parameters are set to zero.

eigenvectors {p1, . . . ,pnm} of the shape vectors’ covariance
matrix. P = (p1 . . . pnm) spans the coupled shape space and{

x = x̄+Pb; b ∈ Rnm ,b(m) ∈
[
−3
√

λm,3
√

λm

]}
(1)

is the linear statistical shape model with coupled shape
parameters b. Note that (1) is a pure shape model that
does not contain inter-organ pose variability. By omitting the
local alignment of the objects it is also possible to build a
pose and shape model [16]. However, given the linear model
assumed in this work, the attempt to model e.g. rotational and
therewith definitely non-linear effects by this means would
amount to corrupt our modeling approach by purpose. Fig. 1
gives a qualitative impression of the coupled shape variability
of liver and spleen of the SSM used in this work.

B. Automatic Landmarking

The main challenge in shape modeling is the establishment
of corresponding points. While manual landmarking is a
feasible approach in 2D, it is impractical in 3D because
several thousands of landmarks must be pinpointed exactly
on each training sample. In this work, the idea of establishing
correspondence by parameterization is adopted and applied
to each object to be included in the multi-object ASM.
The parameter domain we opt for is the unit-2-sphere S2.
Given such an S2-parameterization, there exist well-known
algorithms for establishing improved correspondence by op-
timizing a model-based cost function.

The distmin-approach [17] is used in order to generate
initial parameterizations {ω i,o : S2→ Si,o; i = 1, . . . ,ns, o =
1, . . . ,no}. This is motivated by the fact that, as it has
been shown recently [17], parameterizations generated in
this way are especially suited for subsequent correspondence
optimization. This is done based on the algorithm in [18], but
using another cost function: The simplified MDL objective
is replaced by the approximation of the full MDL cost
function [19], which performed superior in our experiments.

C. Texture Modeling

Based on the SSM, an active shape model (ASM) is
generated by modeling the local image texture in the vicinity
of each landmark and use this learned information to drive
the adaption of the model to the image during segmentation.
A common approach is to sample 1-D intensity profiles {g j

i }
by collecting 2na +1, na ∈ N+ intensity values with distance
∆ along the surface normals {n j

i } for each landmark j
and sample image i. These intensity profiles can directly
serve as feature vectors {f j

i }. Assuming that {f j
i } emanate

from a multivariate Gaussian distribution, the average fea-
ture vector f̄ j = ∑

ns
i=1 f j

i and the feature covariance matrix
F j = (ns−1)−1

∑
ns
i=1(f

j
i − f̄ j)(f j

i − f̄ j)T are used to estimate
the probability that the feature vector f̂ j has been drawn from
the modeled distribution using the Mahalanobis distance,

d(f̂ j) =

√(
f̂ j− f̄ j

)T F j−1 (f̂ j− f̄ j
)
. (2)

The features used in this work combine intensity and gradient
profiles. Both are scaled to the interval [0,1] to make them
more robust against varying illumination conditions [20] and
to ensure their equivalent importance.

D. Image Segmentation

The standard approach for determining the pose
parameters T and the shape parameters b of the
sought segmentation Y ∈ R3np is by iteratively minimizing
L = ∑

np
j=1 ||Ŷ( j)−T

(
x̄( j)+(Pb)( j)

)
||22 [2]. To this end, 1-D

intensity profiles are sampled from the image volume at po-
sitions a(k)j = Y( j)+ k ∆n j; k =−nk, . . . ,nk, nk ∈ N+. Here,
Y( j) = Tx( j) denotes the position of the j-th landmark in
the image space. The fitness of the feature vector f j(a(k)j ) is
evaluated using (2) and the position of the best performing
feature f̂ j stored in Ŷ( j).

In order to account for the different objects in the multi-
object ASM, we propose a coupled shape/separate pose
approach. That is, given an estimate of the coupled shape
parameters b, the pose parameters T are calculated as
in [21] but independently for each object. In this pro-
cess, outlying feature positions may falsify the pose pa-
rameters substantially. Therefore, feature positions with dis-
tance d j = ||Ŷ( j)−Y( j)||2 greater than the average distance
1/np ∑

np
j=1 d j are penalized with 1/(2+d j

2) [22]. After posi-
tioning the objects independently we estimate their coupled
shape parameters b (1) in the least-squares sense as in [2]
but using the coupled shape space of all objects (Sec. II-A).
This process of separate pose and coupled shape parameter
estimation is run for a fixed number of iterations.

III. EXPERIMENTS AND RESULTS

We train a multi-object ASM using 82 abdominal CT
scans (in-plane resolution: 0.7-1.0 mm, slice thickness: 3.0-
5.0 mm). Manual segmentations of liver and spleen were
generated by clinical experts using a tablet monitor and
are subsequently used for automatic multi-object SSM con-
struction as detailed in Sections II-A and II-B, whereas
2562/1002 landmarks are used for the liver/spleen. The
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TABLE I
MULTI-OBJECT SEGMENTATION ACCURACY USING COUPLED SHAPE

AND POSE (CSCP) AND THE NEWLY DEVISED COUPLED SHAPE/SEPARATE

POSE (CSSP) APPROACH. VALUES INDICATE MEAN± STD. ERROR.

initial cscp cssp
ASD / mm 5.9±0.6 4.2±0.2 3.6±0.5
RMSD / mm 7.9±0.9 6.8±0.4 5.7±0.8
VOE / % 29.8±2.4 22.2±1.5 19.0±2.0

CT scans are smoothed using anisotropic diffusion and an
image pyramid comprising four different resolution levels is
constructed from the denoised images. At each resolution
level and landmark, texture profiles of half length na = 2
are used (Sec. II-C). The spacing of the profile samples is
∆ = 4.0/2.0/1.0/0.5mm at the different resolution levels.

For testing all five abdominal CT scans (in-plane
resolution: 0.6-0.8 mm, slice thickness: 1.3-2.0 mm)
from the publicly available 3D-IRCADb-01 database
(http://www.ircad.fr/softwares/3Dircadb/3Dircadb1/) that
provide manual expert segmentations of both, liver and
spleen are used. Equivalently to the training stage, the test
images are smoothed using anisotropic diffusion. During
segmentation (Sec. II-D), an image pyramid is built and
the number of iterations per resolution level is successively
increased from 10 to 20. The search radius is set to nk = 4.

We evaluate the proposed multi-object coupled
shape/separate pose approach (cssp) w.r.t. the two
alternatives (i) coupling of shape and pose (cscp) and
(ii) independent segmentation of liver and spleen using
two single-object ASMs (standard). In order to have a fair
comparison, the initial positioning of the single-object ASMs
in a test image must be the same as for the multi-object
ASM. Given an appropriate (e.g. manual) initial positioning
of the multi-object ASM in the test image, we use the ICP
algorithm [23] to calculate the similarity transform that
matches the mean shape of the liver and the spleen ASMs
with the liver and spleen shape of the initially positioned
multi-object ASM.

To compare our results with the manual reference segmen-
tations, the average symmetric surface distance (ASD), the
root mean square symmetric surface distance (RMSD), and
the volumetric overlap error (VOE) are used. Quantitative
and qualitative results are given in Tab. I and in Fig. 2 and 3.

IV. DISCUSSION AND CONCLUSIONS
The quantitative results provided in Tab. I and in Fig. 2

as well as visual inspection of Fig. 3 indicate feasible
segmentation results. Clearly, the newly devised coupled
shape/separate pose approach provides considerably better
results compared to the coupling of shape and pose. This
observation applies to both, the multi-object segmentation
results (Tab. I) as well as the results for the individual
organs (Fig. 2). At this, the spleen benefits more from pose
decoupling (Fig. 2(b)) because it is the smaller organ that
features less landmarks. Thus, its pose is biased by the more
mighty liver in the coupled pose scenario.

(a) Liver, RMSD (b) Spleen, RMSD

Fig. 2. Segmentation accuracy for individual organs using single-object
ASMs (standard) and a multi-object ASM with coupled shape and pose
(cscp) and with coupled shape but separate pose (cssp) as devised in this
work.

Furthermore, Fig. 2 shows that the proposed coupled
shape/separate pose approach performs in average slightly
better in our tests than the standard procedure of segmenting
liver and spleen individually. While this observation applies
to both organs, indicating that coupling can indeed help
to provide more accurate segmentations of highly variable,
not directly connected organs, it might be surprising from a
statistical point of view: Given that the number of training
samples (here: 82) is typically way smaller than the sample
size (here: 7686/3006 for liver/spleen), it seems somewhat
counterintuitive that by coupling the samples of different
objects, i.e. essentially making the sample size larger, the
underlying probabilistic model performs better. Clearly, this
aspect needs further investigation by varying (presumably
increasing) the size of the training set and the number of
modeled objects, and by changing the number of parameters.

The latter aspect can e.g. mean to model the object pose
relative to each other. By imposing learned constraints on the
inter-organ pose variability rather than estimating the pose
solely from the image features, a more robust positioning of
the organs might be achieved. As mentioned in Sec. II-A, this
amounts to modeling effects that cannot be captured by the
linear model (1) but requires alternative methods (e.g. [16]).

In comparison to other works, we have to admit that the at-
las based approach of [7] yields more accurate segmentations
for liver and spleen. Compared to alternative approaches re-
lying on statistical models for multi-organ segmentation our
results are less accurate for the liver than the liver-specific
approach in [14]. But we are able to outline liver and spleen
more accurate than does the localization model in [13]. At
this, it should be noted that the goal of this work is not to
provide cutting-edge segmentation results. Instead, the major
contribution is the introduction of a general framework for
automatic multi-object ASM construction and its application
for segmentation in a coupled shape/separate pose scenario.

Our current ASM segmentation basically follows the stan-
dard approach, which is prone to fail easily under non-
ideal circumstances. For instance, Heimann [24] reported
much larger segmentation errors in an application for liver
segmentation when using an ASM with linear texture model
and linear shape constraints as it is also employed in this
work. Contrariwise, the usage of non-linear texture models
and less restrictive shape constraints have proven to boost the
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(a) Liver (left) and spleen (1st data set, axial) (b) Liver (1st data set, sagittal) (c) Liver (left) and spleen (1st data set, coronal)

(d) Liver (left) and spleen (2nd data set, axial) (e) Spleen (2nd data set, sagittal) (f) Liver (2nd data set, coronal)

Fig. 3. Segmentation results for two data sets using single-object ASMs (black) and the newly devised coupled shape/separate pose approach (white).
Manual reference segmentations are marked red. The image intensities are displayed using a standard liver window (window level/width = 30/400 HU).

attainable segmentation results by a factor of two or more [3],
[4], [24]. By following these recent approaches, considerable
improvements of our current segmentation results can be
expected in the near future.
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