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Abstract— The examination of abdominal aorta is an effective
way to diagnose many cardiovascular diseases. Aortic stiffness
measured by pulse wave velocity (PWV) calculation is a good
estimate of overall cardiovascular health. Calculation of pulse
wave velocity requires the length of abdominal aorta as an
input parameter, while the structure of abdominal aorta can
be used for diagnostic purposes. For the sake of non-invasive
diagnostics, non-contrasted MRI images of aorta were used.
Due to the “black-blood” imaging, a lot of artifacts are present
and a robust centerline extraction method is needed. In this
research we develop a novel graph-based method for extracting
centerlines of abdominal aorta for length calculation. Our
method is robust to artifacts and noise and applicable to any
imaging modality.

I. INTRODUCTION

Aortic stiffness is an important diagnostic factor that can
be well estimated through the pulse wave velocity (PWV)
measurement. For this, the length of the abdominal aorta
between the points of interest needs to be calculated. The
goal of this research is to extract the centerline of the
abdominal aorta in 3-D MRI images. In order to achieve the
non-invasive examination, the contrast fluid was not used in
the scanning process, hence, the abdominal aorta appears as
a black blood vessel (i.e. “black-blood” images). This poses
a much harder segmentation problem due to the fact that the
structures surrounding the aorta appear in the same range
of (low) pixel intensities (lungs, veins and heart), where the
tissues delineating these organs are often not well visible.
This is clearly noticeable in the heart region, where the
delineation between heart ventricles and aorta is not obvious.
The non-contrasted images often contain artifacts due to
heart movement and intense blood flow, causing the aorta
not to be visible in some of the slices. Therefore, classical
segmentation methods applied to this problem often produce
inaccurate results containing regions of leakages.

The current reviews on vessel extraction techniques [1], [2]
show a wide variety of methods developed for angiographic
vessel images. However, the “black-blood” vessel extraction
methods are rare. The methods working on “black-blood”
vessel images are either not robust enough to deal with slice
discontinuities and motion and flow artifacts [3] or are not
fast enough [4]. Most common methods for segmentation
of the abdominal aorta are the methods for segmenting
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aortic aneurysms, which work on angiographic images of
much higher quality than in our case. The methods using
deformable models [5] need fine parameter tuning to avoid
leakages in MRI images, where different regions of the
aorta might need to be segmented separately with different
parameters. The existence of discontinuities of aortic regions
in neighboring slices is also a problem which these methods
are not able to cope with. The same problem arises for
model based methods [6], where the multiple models for
healthy and sick aortas might need to be specified separately.
Methods based on the mathematical morphology [7], [8] are
often used for vessel segmentation, but they are also no able
to cope with the mentioned artifacts.

Our previous work on this problem was a segmentation
algorithm described in [4], where we proposed a method that
compares the pixel value to the average value of all pixels in
the structuring element. The value assigned to the processed
pixel is equal to the maximum size of the structuring element,
thus prioritizing similar structures, and making the segmen-
tation process less dependent on individual pixel values. In
this paper we propose a method that extends this approach
to centerline extraction. The main idea of our approach is
to build a regular structured grid skeleton (considered as a
graph), where the node and link values are sampled from
the image using the described method [4]. The centerline
of the aorta is extracted in a semi-automatic way, where
the user has to specify the start and end point of a blood
vessel. We design our algorithm to allow quick examination
of multiple alternative paths for extraction of complicated
vessel structures.

The paper is organized as follows. In Section II, we explain
the proposed method. In four subsections we describe our
previous work on the topic and its extension to centerline
extraction for length measurement. In Section III, we present
the results of our proposed algorithm and length measure-
ment with the results of length measurements of hand-made
expert centerlines. Section IV concludes this work.

II. THE PROPOSED METHOD

We develop our method for vessel centerline extraction
of non-contrasted MRI images, although the same method
can be applied to centerline extraction of contrast-injected
images. We base the proposed method on our previous work
on generalized profiles (GP), described in [4], [9], which is
a generalization of multi scale approach of morphological
profiles [10].
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Fig. 1: An illustration of the proposed differential structuring
element (DSE) compared to standard SE. Top row: SE with
different size r, middle row: DSE with varying r parameter
and constant n parameter, bottom row: DSE with varying n
parameter and constant r parameter.

A. Generalized profiling

The basic idea of generalized profiling is to compare the
pixel value to the characteristic value of all pixels in the
(multi scale) structuring element, by which we determine
the size of the neighborhood in which the current pixel is
“darker” than its surrounding. One of the main novelties of
GP method was the introduction of differential structuring
element (DSE), defined as a subtract of two structuring
elements S(p) of different size:

Dr,n(p) = Sr+n(p)− Sr(p), r ∈ {0, 1, ...}, n ∈ N, (1)

where r denotes the size of a smaller SE and parameter n
is defined as the difference in sizes between the two SEs.
This principle is illustrated in Fig. 1 in the case of spherical
DSE. By definition, the SE of the size r = 1 is a window
containing only the center pixel p, while the SE of the size
r = 0 is an empty set. The advantage of this principle is
that the DSE allows a wider range of neighborhood sets to
be formed that in the case of SE. In general, the SE of any
size can be expressed as a DSE with the r parameter set
to zero (r = 0). Another novelty of GP method was the
introduction of different functions applies to the whole set
of values defined by the DSE:

fD(r, n, p) = f(Dr,n(p)), (2)

where f denotes a function applied to the DSE at pixel
p for given parameters r and n. This value represents a
given characteristic of the neighborhood Dr,n, depending
on the particular choice of f . In this paper, we use only
the average function (f = avr). For segmentation purposes,
it is of interest to consider the 1-D vector obtained by
varying the r parameter of the DSE, while keeping the n
parameter to its lowest value (n = 1). This yields a vector
of average functions applied to one pixel wide ring-shaped
neighborhoods:

Ravr,D(n = 1, p) = {avrD(r, n = 1, p), ∀r ∈ [0, rmax]}.
(3)

Finally, the range in which the current pixel is darker than
its surrounding d is calculated as the number of sequential
components (starting from the first component) of vector R,

(a)

(b)

Fig. 2: Examples of artifacts found in “black-blood” MRI
images marked in red: (a) aorta not visible in transversal
slice, (b) noise in the aorta due to heart motion.

for which the all the vector components have a value higher
than the value of the current pixel p:

d(p) = max
rmax

(avrD(r, n = 1, p) > v(p), ∀r ∈ [0, rmax]).

(4)
Obviously, the “measure of darkness” is limited by the value
rmax, which has to be chosen beforehand. In this paper we
use the spherical (3-D) DSE with the maximum span of
rmax=5 pixels.

B. Data sets

The data sets we used consist of low quality (1.5T) non-
contrasted MRI images, where a lot of noise and motion
artifacts are present. The aim is to obtain valid results on
structure of the aorta, while making the method non-invasive
and as fast as possible. Hence, the 3-D data set was taken
with a high inter-slice spacing of 6.6mm (pixel spacing is
1.32mm×1.32mm), which often causes the effect of single
object not being connected in neighboring slices, making the
segmentation of the given data set a hard task. Fig. 2 shows
examples of artifacts found in the “black-blood” MRI data
sets, where the aorta is often not clearly visible in a number
of adjacent slices. For this reason, the centerline extraction
method has to be robust, while requiring low amount of user
interaction. The method should be general in order to allow
the centerline extraction on other imaging modalities.

C. Creating the sampling grid

The centerline extraction method we propose in this paper
is based on the careful construction of subsampling grid
using our method of generalized profiling [9]. The main
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advantage behind the subsampling in centerline calculation
is to avoid artifacts that appear randomly in certain slices and
to take into account only the subsampled positions which are
“valid” positions inside the abdominal aorta. Another advan-
tage of subsampling is that the calculation time is reduced
when compared to the techniques that take every voxel of the
3-D image data set into account. We create an initial skeleton
grid (graph) as a regular grid of arbitrary size. This means
that the nodes of the initial grid are equally distributed with
the constant spacing between them in all directions (x, y and
z directions), which is determined by user specified number
of sampling nodes in each of directions. Our experiments
show that sampling grid of dimensions 20×20×20 results in
the best balance of given results and needed execution times.
It should be noted that specifying the region of interest for
the algorithm can speed up the calculation and yield better
end results.

Due to the regular spacing of nodes, some of the nodes of
the regular grid get positioned in bright regions of the image
which can not be the regions of the aorta. In order for all
the nodes to be positioned in the dark regions of the image
(which are candidates for the aortic regions), we propose to
move the nodes to the darkest image region in the bounding
area positioned between the nodes of the initial grid. This
means that our algorithm searches for the darkest region
around each node, where the search areas do no overlap.
We define the position of the darkest region to be the pixel
with the intensity belonging to the lowest 10% of searched
values in the given node area, which has the highest profile
value for average profile function, as defined in (4). When
the center of the darkest region for a given node is located,
the node of the grid is moved to the found position. In
this fashion, we re-position the nodes in the darkest regions
while making sure that the nodes will not overlap. Hence, the
subsampling property of the grid is maintained. We finalize
the grid construction by entering the values for the links
connecting each node to its 6 closest neighbors from the
initial grid. The metric value of a link m is calculated as the
average of all the pixel intensities belonging to the straight
line L connecting the two nodes of the link:

mlink =
1

n(L)

n(L)∑
i=1

v(pi), (5)

where v(p) represents the intensity of pixel p and n(L) the
number of pixels belonging to the line segment. Fig. 3a
shows the modified grid of size 20×20×20, where the red
color indicates higher link values and blue indicates lower
link values.

D. Centerline extraction

In order for the centerline to be extracted, the user must
specify the start and end position of the desired centerline
path. These positions are entered into the existing sampling
grid as new nodes, which we connect with their closest 6
nodes and enter the new link values as described by (5).
Using the metrics stored in the links of the sampling grid,

(a) (b)

Fig. 3: Illustration of sampling skeleton grid construction and
centerline extraction. (a) shows the final sampling skeleton
grid. The outer part of the grid is not modified due to the
constant value of the background pixels. The nodes in the
inner part of the grid converge to darker regions of the image.
(b) extracted centerline of abdominal aorta after the graph
converging and smoothing of the result.

the graph converges with respect to the entered start and end
nodes separately. This means that the distances of all the
nodes from the given start node are calculated, after which
the distances of all the nodes from the given end node are
calculated, using the Dijkstra’s shortest path algorithm [11].
In this fashion, the final metric for each of the nodes mnode

is calculated as the sum of distances from both the start and
end node:

mnode = l(node, nodestart) + l(node, nodeend), (6)

where l(node1, node2) represents shortest path between
node1 and node2 (obtained from the link metrics). We
design our application to find the different paths between the
desired nodes and to sort the obtained centerlines according
to the calculated node metrics (in an ascending fashion). In
order to take only different paths into account, the nodes
belonging to a previously found centerline are not taken into
account (since they will yield the same path that was already
found). Finally, the obtained paths are smoothed by simple
weighted averaging of neighboring positions in the calculated
paths. The application is implemented in such a way that the
user is able to scroll through the found and sorted centerlines
and select the desired best path (centerline).

The advantage of our approach of converging graphs with
respect to different nodes is that the extraction of complicated
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TABLE I: Lengths of abdominal aorta obtained using our
centerline extraction method and hand-made centerline ex-
traction

Set Our method (mm) Ground truth lengths Deviation (%)

1 363 374 2.94

2 407 415 1.92

3 399 396 0.75

4 386 376 2.59

5 387 395 2.02

paths can be performed using intermediate points, which
are user specified. In that case the described algorithm is
performed on a number of user specified nodes (in an ordered
way), instead on only two points. In this fashion our proposed
algorithm provides a way of interactive segmentation of
images of a very low quality and high presence of artifacts.
Moreover, our algorithm is applicable to different imaging
modalities by changing the metrics used for graph converging
(e.g. for contrast-enhanced images, the priority is given to the
bright regions instead of dark ones).

III. RESULTS

We tested our algorithm on five data sets of 3-D MRI
images of “black-blood” abdominal aorta. The dimensions
of the grid were 20×20×20, and the maximal radius of
spherical DSEs was set to 5 pixels. In each case the start
and end node of the aorta were specified, and the resulting
centerlines were obtained without needing to specify the
intermediate centerline positions. The results depicted in Fig.
4 show that the extracted centerlines accurately represent the
path and position of the abdominal aorta. The comparison of
the lengths obtained using our centerline extraction method
to lengths obtained by hand-made expert centerlines is given
in Table I. The calculated lengths show that the absolute
deviation falls under 3% in all five cases, which represents
a highly accurate length calculation. The average execution
time on a 2.4GHz processor is about 2 minutes.

The future work on this topic will consist of the implemen-
tation of centerline extraction based on a predefined model of
the abdominal aorta, which will result in less user interaction.

IV. CONCLUSION

We introduced a novel centerline-extraction method and
applied it to determining the path of abdominal aorta and
calculating its length. The proposed algorithm uses advanced
methods to create the sampling grid in order to deal with the
intense artifacts found in the non-contrasted MRI images and
to shorten the execution. Our method is semi-automatic, al-
lowing arbitrary number of intermediate centerline points to
be specified for extraction of complex paths. The advantage
of our approach is that it is applicable to all imaging modal-
ities, including the non-contrasted MRI images, allowing the
non-invasive aorta examination. Obtained length calculation
results show high accuracy when compared to results of
expert hand-made centerlines.

Fig. 4: Results of abdominal aorta centerline extraction
accurately depict the path and length of the aorta.
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