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Thijs Eijsvogels3, Willy Colier5, Marianne Floor-Westerdijk5, Jörgen Bruhn1,2, Jason Farquhar1

Abstract— Motor-impaired individuals such as tetraplegics
could benefit from Brain-Computer Interfaces with an intuitive
control mechanism, for instance for the control of a neuropros-
thesis. Whereas BCI studies in healthy users commonly focus on
motor imagery, for the eventual target users, namely patients,
attempted movements could potentially be a more promising
alternative. In the current study, EEG frequency information
was used for classification of both imagined and attempted
movements in tetraplegics. Although overall classification rates
were considerably lower for tetraplegics than for the control
group, both imagined and attempted movement were detectable.
Classification rates were significantly higher for the attempted
movement condition, with a mean rate of 77%. These results
suggest that attempted movement is an appropriate task for
BCI control in long-term paralysis patients.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) enable people to drive
devices directly with their brain signals, without producing
any overt behaviour. The BCI decodes brain activity, usually
obtained with an electroencephalogram (EEG), and converts
this information to a sensible output such as a command
for a device or computer. This technique allows people to
communicate their intentions in a very direct way and is
especially useful for people with severely disabled motor
functions, such as tetraplegics [1].

A commonly used paradigm is the detection of the
mu- and beta rhythm event-related desynchronization and -
synchronization in the motor cortex following executed or
imagined movements [2], e.g. to distinguish between left-
hand and right-hand (imagined) movements. In so-called
’brain switch’-type BCIs however, the system is not dis-
tinguishing between two different tasks as such but merely
detects one specific mental state from the ’baseline’ state
in which the user is not intending any communication. In
a movement-based brain switch, the brain state during one
motor imagery or execution task is to be differentiated from
all other states [3]. Not only can the user refrain from
performing a specific mental task when there is no need for
system use or change, but also the distinction between one
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motor task and a baseline state may be more robust than the
distinction between two different types of motor task [4].
This is especially useful in control applications with a high
demand of accuracy. For instance, in one study a spinal cord
injury patient was able to control a grasp neuroprosthesis
with a motor imagery-based brain switch [5].

Although the number of BCI studies involving patients
is limited, this line of research is gradually receiving more
attention [6]. Interestingly, in most studies patients are asked
to imagine their movements only. Even though no actual
motor output is visible, attempting a certain movement rather
than imagining it may feel more natural to the patient
and perhaps even generate a stronger brain response. It
was shown with fMRI that cortical activation patterns of
attempted movement in tetraplegics correspond well to those
of executed movement in heatlhy controls [7]. Kauhanen et
al. [8] asked patients to attempt movement execution. The
investigators were able to detect the time-locked lateralized
readiness potential during movement planning in tetraplegics
for control of a BCI.

Unfortunately, such precise time domain responses rely
on a cue-based system. For use in an asynchronous setting
with a more natural way of controlling a device [9], [10],
frequency information would be more appropriate. In the
current study two things were investigated:

• Whether movement-related frequency information from
EEG is detectable in patients who have lost sensory and
motor control of their limbs more than a decade ago

• How classification results of patient’s attempted move-
ments relate to the classification results of their imag-
ined movements

II. METHODOLOGY

A. Subjects

Ten male tetraplegic patients (mean age 48.9 yrs) and
twelve male controls (mean age 45.9 yrs) participated in the
study. All patients had a complete lesion at C5-C6, with
the exception of one patient with a complete lesion at level
C4-C5. The time since the injury varied between 11 and 40
years (mean 25.2 yrs). The protocol was approved by the
institutional review board and all participants gave informed
consent. After data collection, one patient and one control
were excluded from the data set due to insufficient signal
quality.
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Fig. 1. Experimental sequence. Each sequence consisted of two ’rest’
trials, two ’imagined movement’ (IM) trials and either two ’movement’
(EM) or two ’attempted movement’ (AM) trials. The dotted lines represent
the random intertrial intervals.

B. Materials and Procedure

Subjects were presented with six sequences of movement
tasks, each sequence consisting of six trials (Fig. 1). Each
trial lasted 15 seconds, during which participants had to
follow the instructions on the screen. The three types of task
participants were asked to perform were ’rest’ (do nothing),
’movement’ (tap your fingers and thumb continuously) and
’imagined movement’ (imagine tapping your fingers and
thumb continuously). When patients received the instruction
of ’movement’ they were asked to attempt performing the
actual movement even though the movement could not really
be executed. Each type of movement was performed 12 times
with the trials equally divided over all sequences. Instructions
were presented randomly, with the restriction that the first
sequence trial was always ’rest’. Intervals between trials
lasted between 27 and 33 seconds to ensure sufficient re-
covery time for the simultaneously recorded haemodynamic
signal (results not presented here). Total recording time per
participant, including short breaks, was approximately 30
minutes.

EEG was recorded with an 8-channel passive system
(TMSi, Enschede, the Netherlands), the electrodes placed
on positions C3, FC3, C5, CP3, C4, FC4, C6 and CP4
according to the 10/20 system. Data was sampled at 2048
Hz and acquired with the Fieldtrip toolbox in Matlab [11].
All patient recordings and two control recordings took place
at the participant’s homes, the remaining control experiments
were conducted at the institutional lab.

C. Analyses

After downsampling the EEG data to 256 Hz and remov-
ing the DC offset, linear detrending was performed to remove
slow drifts. Trials were split into 3-second segments. Bad
segments of data were automatically identified and rejected,
based on a signal variance measure. This reduced the average
number of segments available for analysis by 5.6% to 57 seg-
ments per subject per condition. For each segment, the power
spectral density was computed for 8 to 24 Hz using Welch’s
method with a 4 Hz frequency resolution [12]. The derived
power spectral features (5 frequency bins x 8 channels) were
used for classification with an L2-regularized linear logis-
tic regression classifier [13]. The classifier’s performance
was evaluated with 10-fold cross-validation for three binary
problems to distinguish each individual movement condition
from the ’rest’ condition: 1) ’executed movement’ versus
’rest’ (controls only), 2) ’attempted movement’ versus ’rest’
(patients only) and 3) ’imagined movement’ versus ’rest’
(both groups).

To determine statistical significance, a one-tailed depen-
dent samples t-test was used for comparison of classification

performances between conditions within both subject groups.
For visualization of the discriminative information be-

tween the classes in each of the binary classification prob-
lems, the average area under the ROC curve (AUC) for both
the patients and the control group was calculated for the 9-
13 Hz (mu) and 17-21 Hz (beta) frequency bands.

III. RESULTS

In the control group, a mean classification rate of 82%
(SE 2%) was obtained for movement imagery when distin-
guishing it from the baseline ’rest’ condition, whereas for
the patient group this rate was much lower at 66% (SE
4%). However, a rate of 77% (SE 3%) was obtained for the
’attempted movement’ condition in patients, with individual
rates ranging from 66% to 90%. All rates are shown in Table
1. Average classification performance in the patient group
was significantly larger for ’attempted movement’ than for
’imagined movement’ (p = 0.001). In the control group, a
similar effect was observed with a lower performance for
the ’imagined movement’ condition than for the ’movement’
condition (p = 0.01).

The Area Under the Curve plots (Fig. 2) show a power
decrease in the mu and beta bands in all movement condi-
tions as compared to rest, with an overall stronger response
for the control group. However, a comparable pattern is
seen within both groups: less discriminative information is
present in the imagery condition than in either attempted or
executed movement. The plots indicate a slight bias towards
the left hemisphere in the attempted movement condition
in the patient group. It could however not be determined
whether this is a generic effect.

IV. DISCUSSION

In this study we have shown that movement-related EEG
signals can be detected in patients who have lost their ability
to move on average twenty-five years ago. Specifically, when
they actually attempt to perform finger movements, this
results in significantly higher classification rates as compared
to when they only imagine making the movements.

All tetraplegic participants in this study had retained at
least some form of movement in their upper extremities,

TABLE I
CLASSIFICATION RATES PER SUBJECT GROUP PER CONDITION

Control group Patient group
Subject Execution Imagery Subject Attempt Imagery

1 88 90 1 83 76
2 89 91 2 77 74
3 91 92 3 72 53
4 84 80 4 66 58
5 92 87 5 67 56
6 74 73 6 79 78
7 84 71 7 90 80
8 77 71 8 80 57
9 91 88 9 80 66

10 88 75 -
11 89 81 -

mean 86 82 mean 77 66
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Fig. 2. Average Area Under the Curve plots for controls and patients
per frequency range and movement condition. For visualization purposes,
values were interpolated for the areas between electrodes. This is a plot of
discriminative information where a value of 0.5 indicates no discriminative
information between two conditions. Values <0.5 indicate the feature used
for classification is smaller in the ’rest’ condition whereas values >0.5
indicate the feature is larger in the ’rest’ condition. As expected, for all chan-
nels the values are >0.5, indicating a decrease in power when executing,
imagining or attempting movement (i.e. event-related desynchronization).

mostly their wrists. Although none could execute the fin-
gertapping movement, in attempting to do so the wrist
or other arm muscles may have been slightly activated.
This could, at least partly, explain the difference in EEG
response between movement attempt and imagery, similar to
the difference between movement execution and imagery in
healthy individuals. Future research in patients with different
levels of tetraplegia could possibly reveal whether the level
of retained movement ability indicates the strength and thus
detectability of EEG responses for attempted movement.

As the patients have been paralyzed for many years, their
overall lower brain response to motor tasks as compared

to the response in healthy subjects is not very surprising.
Nevertheless, in patients as well as healthy participants,
motor imagery is less informative than a task in which motor
execution is actually intended. Motor imagery requires active
suppression of movement and is often regarded a difficult
task altogether. Our results indicate that movement execution
in healthy users may be more representative of movement
attempt in patients than movement imagery, even though
classification performance in the patient group is generally
lower than in the control group.

Since in the current study only spectral features in the
EEG are used, obtained during continuous rather than brisk
movements, temporal precision is of lesser importance for
detection. Therefore, this task would be more suitable for use
in an asynchronous BCI than a task relying on a very precise
time-lock. Moreover, the current results were obtained with
only 8 EEG channels, allowing for a fast setup and therefore
practical use.

In conclusion, attempted movement has proven to be a
robust task for tetraplegics to control a BCI and could
potentially be implemented in an asynchronous brain switch
paradigm.

ACKNOWLEDGMENT
The authors thank Twente Medical Systems International

for providing the EEG system used in this study.

REFERENCES

[1] J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, and
T.M. Vaughan. Brain-computer interfaces for communication and
control. Clinical Neurophysiology, 113:767–791, 2002.

[2] G. Pfurtscheller and F.H. Lopes da Silva. Event-related eeg/meg
synchronization and desynchronization: basic principles. Clinical
Neurophysiology, 110:1842–1857, 1999.

[3] G. Pfurtscheller and T. Solis-Escalante. Could the beta rebound in the
eeg be suitable to realize a ”brain switch”? Clinical Neurophysiology,
120:24–29, 2009.

[4] D.J. McFarland, L.A. Miner, T.M Vaughan, and J.R. Wolpaw. Mu
and beta rhythm topographies during motor imagery and actual move-
ments. Brain Topography, 12:177–186, 2000.

[5] G.R. Müller-Putz, R. Scherer, G. Pfurtscheller, and R. Rupp. Eeg-
based neuroprosthesis control: A step towards clinical practice. Neu-
roscience letters, 382:169–174, 2005.

[6] L.F. Nicolas-Alonso and J. Gomez-Gil. Brain computer interfaces, a
review. Sensors, 12:1211–1279, 2012.

[7] S. Shoham, E. Halgren, E.M. Maynard, and R.A. Normann. Motor-
cortical activity in tetraplegics. Nature, 413:793, 2001.

[8] L. Kauhanen, P. Jylänki, J. Lehtonen, P. Rantanen, H. Alaranta,
and M. Sams. Eeg-based brain-computer interface for tetraplegics.
Computational Intelligence and Neuroscience, 2007. Article ID:23864.

[9] S.G. Mason and G.E. Birch. A brain-controlled switch for asyn-
chronous control applications. IEEE Transactions on Biomedical
Engineering, 10:1297–1307, 2000.

[10] G. Townsend, B. Graimann, and G. Pfurtscheller. Continous eeg clas-
sification during motor imagery – simulation of an asynchronous bci.
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
12:258–265, 2004.

[11] R. Oostenveld, P. Fries, E. Maris, and J.M. Schoffelen. Fieldtrip: Open
source software for advanced analysis of meg, eeg, and invasive elec-
trophysiological data. Computational Intelligence and Neuroscience,
2011. Article ID:156869.

[12] B. Blankertz, G. Dornhege, M. Kraudelat, K. Müller, V. Kunzmann,
F. Losch, and G. Curio. The berlin brain-computer interface: Eeg-
based communication without subject-training. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 14:147–152, 2006.

[13] C. Bishop. Pattern Recognition and Machine Learning. Springer, New
York, 2006.

3969


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

