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Abstract— Classification of mental states from electroen-
cephalogram (EEG) signals is used for many applications
in areas such as brain-computer interfacing (BCI). When
represented in the frequency domain, the multichannel EEG
signal can be considered as a two-directional spatio-spectral
data of high dimensionality. Extraction of salient features using
feature extractors such as the commonly used linear discrim-
inant analysis (LDA) is an essential step for the classification
of these signals. However, multichannel EEG is naturally in
matrix-variate format, while LDA and other traditional feature
extractors are designed for vector-variate input. Consequently,
these methods require a prior vectorization of the EEG signals,
which ignores the inherent matrix-variate structure in the
data and leads to high computational complexity. A matrix-
variate formulation of LDA have previously been proposed.
However, this heuristic formulation does not provide the Bayes
optimality benefits of LDA. The current paper proposes a
Bayes optimal matrix-variate formulation of LDA based on a
matrix-variate model for the spatio-spectral EEG patterns. The
proposed formulation also provides a strategy to select the most
significant features among the different rows and columns.

I. INTRODUCTION

Electroencephalogram (EEG) signals are extensively used

for development of brain computer interface (BCI) systems.

A BCI is an interface to control external devices using

electrical activities of the brain. BCI systems are mainly used

to help disabled individuals, but can also be used to assist

healthy individuals in performing highly demanding tasks or

navigation in virtual environments. This paper focuses on

spontaneous BCI systems that are based on decoding motor

imagery tasks using noninvasive EEG signals.

Spatial and spectral characteristics of EEG signals are

widely used in BCI systems to classify motor imagery tasks

[1], [2]. These systems operate on the power spectrum of

multichannel EEG which can be represented as a matrix-

variate1 spatio-spectral pattern X∈R
m×n, with each element

Xij corresponding to the ith frequency component of the

jth EEG channel (electrode). However, there are significant

spatial and spectral correlations in the EEG signal. The corre-

lated components result in redundant data dimensions which

pose a challenge for parameter estimation and classification

tasks. Therefore, a feature extractor is needed to extract a set

of uncorrelated features along the channels and frequencies.
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1In this paper, scalars, vectors, and matrices are respectively shown in
regular lowercase/uppercase (e.g. a or A), boldface lowercase (e.g. a), and
boldface uppercase (e.g. A). Trace of A is denoted by tr(A). Also, the
Kronecker product of the matrices A and B is denoted as A⊗B.

Conventional feature extractors assume vector-variate data,

while the spatio-spectral EEG patterns are inherently a

matrix-variate data: Xm×n. In this paper, we propose a new

algorithm for extraction of discriminant features from the

matrix-variate spatio-spectral EEG patterns.

One of the most commonly used feature extraction al-

gorithms is the linear discriminant analysis (LDA) which

provides a simple non-iterative linear solution applicable to

the general multiclass case. Yet, LDA also assumes vector-

variate input. The most trivial approach to apply LDA on

matrix-variate EEG data is to vectorize the data through

concatenation of the columns (or rows) of Xm×n matrix

[3]. However, breaking the EEG matrix along the rows or

columns ignores the inherent structure along that dimension,

and hence introduces unnecessary degrees of freedom in the

design of the feature extractor.

There have been many attempts to avoid the challenges

of the vectorial approach by introducing a heuristic matrix-

based variant of LDA. A basic two-directional matrix-based

LDA applies LDA sequentially on the columns and rows

of the matrix [4]. However, it has been indicated that such

sequential approach leads to unnecessary information loss

[5]. To solve this problem, [6] has introduced an intuitive

two-sided matrix-variate LDA, called 2DLDA hereby, which

is widely-used in the context of image processing. The

2DLDA method alternates iteratively between a row-wise

and a column-wise LDA step.

The 2D approach can utilize the inherent matrix structure

of the data. Furthermore, it provides computational efficiency

by breaking down the computations into the dimensionality

of columns m and rows n; whereas, the vectorial approach

suffers from a high computational complexity by operating

on the space with the high dimensionality mn for the

concatenated matrix. However, it has been shown that the

existing 2DLDA method provides a generally sub-optimal

solution compared to the Bayes-optimal LDA [7].

This work proposes a novel matrix-variate LDA solution

with two contributions: First, we adopt a theoretical approach

based on the Bayes optimality or minimal sufficiency of

the extracted features. Thus, motivated by the sufficiency

of LDA features and using a matrix-variate data model, a

Bayes-optimal matrix-variate version of LDA is developed.

Second, the proposed formulation can determine the best

set of extracted features to be selected as a feature vector

of arbitrarily reduced dimension. In contrast, the existing

2DLDA method was restricted to extraction of a feature

matrix, and moreover, failed to specify any priority between

the row or column dimensionality of that feature matrix.
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Fig. 1: Outline of the training and testing stages of the EEG

classification system.

II. MATRIX-VARIATE GAUSSIAN MODEL FOR EEG DATA

The desired EEG classification system is demonstrated

in Fig. 1. The BCI system classifies each spatio-spectral

pattern X into one of the classes Ωi, 1 ≤ i ≤ C, cor-

responding to different BCI tasks. The design target is to

minimize the probability of classification error, i.e. maximize

the probability of correct classification. Each class Ωi is

characterized using a likelihood density f(X|Ωi) and non-

zero prior probability P (Ωi) which are estimated based on

the training samples. There are Ni training samples Xij , 1 ≤
j ≤ Ni, available for class Ωi.

A. Homoscedastic Matrix-variate Gaussian Model

The likelihood of each class Ωi, f(X|Ωi), is modeled as

a matrix-variate homoscedastic Gaussian distribution [8]:

f(X|Ωi) =N (Mi,Φ,Ψ) (1)

where the matrices Mi, 1 ≤ i ≤ C, denote the class

means. Matrix Φ is the spectral covariance, also called

column-wise or left covariance, and matrix Ψ is the spa-

tial covariance, also called row-wise or right covariance.

Therefore, knowledge of the parameters Mi, Φ, and Ψ will

suffice to determine the likelihood functions. Note that here

the spectral or spatial covariances of different classes are

assumed to be the same for all the classes: Φi = Φ and

Ψi = Ψ, with the per-class quantities defined as:

Φi =tr−1(Ψi) ∗ EX|Ωi
((X−Mi)(X −Mi)

T ), (2)

Ψi =tr−1(Φi) ∗ EX|Ωi
((X−Mi)

T (X−Mi)), (3)

Multivariate Gaussianity and homoscedasticity are fairly

common practical assumptions for EEG signals [9] as im-

plied by utilization of relevant methods such as LDA. Fur-

thermore, the matrix-variate model in (1) corresponds to a

specific structure for the covariance of the vectorized data, as

follows. Assuming a column concatenation operation vec(.),
denote the vectorized data as xmn×1 = vec(X). Then, the

mean of x in Ωi equals µi = vec(Mi), and assuming that

(1) holds, the class-conditional covariance of x equals

Σmn×mn = Ψn×n ⊗Φm×m. (4)

Therefore, the matrix-variate Gaussianity implies a separable

structure for the covariance matrix of the vectorized data as

defined by (4).

The above separability property intuitively means that the

variance between two elements of the matrix-variate data

Xm×n can be decomposed into an inter-row and an inter-

column component. The simulation results for our method

suggest that this property is a reasonable practical approxi-

mation for the spatio-spectral EEG patterns.

B. Separable Between-Class Scatter Matrix

The vectorial between-class scatter matrix is also modeled

to be separable into matrix-variate counterparts:

SB = SBR ⊗ SBL, (5)

where SB =
∑C

i=1
P (Ωi)(µi − µ)(µi − µ)T , and

SBL =

C∑

i=1

P (Ωi)(Mi −M)(Mi −M)T , (6)

SBR =

C∑

i=1

P (Ωi)(Mi −M)T (Mi −M). (7)

The assumption of (5) enables us to derive a Bayes optimal

matrix-variate LDA solution. In general, as demonstrated by

the experimental results, this assumption can be considered

as a reasonable simplification that results in more computa-

tional efficiency and robust parameter estimation.

III. CURRENT METHODS

A Bayes optimal feature extractor yields a minimal set of

features that in theory can be used to classify the data with

the optimal accuracy determined by the Bayes error [10].

Such features contain all the discriminatory information of

the original data. Mathematically, the optimal Bayes error

performance can be achieved if and only if the feature

extractor provides a sufficient statistic for Ωi [10], [11].

Among linear feature extractors, LDA is a Bayes optimal

solution for homoscedastic vector-variate Gaussian data [11].

For data with restricted matrix-variate structure, a heuristic

two-directional LDA (2DLDA) has been proposed [6] that

can deploy the matrix structure of the data. This method

can reduce computational complexity, and results in more

stable parameter estimates in small-sample-size scenarios.

However, 2DLDA is not a Bayes optimal solution as LDA,

and therefore theoretically yields higher Bayes error values.

Furthermore, the number of extracted features in 2DLDA

is always a product of two integers, qr, where both the

number of rows q and columns r of the feature matrix

need to be decided by the user. It should also be noted that

2DLDA separately deals with spectral/spatial covariances,

both for within-class covariance and between-class scatter

matrices, and hence implicitly assumes separable Σ and SB .

In fact, these conditions are a generalization of the conditions
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asserted in [7] for the Bayes optimality of 2DLDA in the

two-class case.

IV. PROPOSED MATRIX-VARIATE LDA (MLDA)

We will use the matrix-variate model of Section II to

find a matrix-variate formulation for the LDA solution. The

parameters of this model are estimated using the training data

as follows. The prior probabilities P (Ωi) can be estimated as

the fraction of the training samples belonging to Ωi, i.e. Ni

N
.

For mean and covariance parameters, maximum-likelihood

(ML) estimates are used. The ML estimate of Mi is the

average of the samples in that class. The ML estimates of

the spectral and spatial covariances can be calculated using

an iterative procedure similar to that of [12]. In each iteration,

the pooled estimate of the average covariance in either row

or column direction is updated:

Ψ =
1

mN

C∑

i=1

Ni∑

j=1

(Xij−Mi)
TΦ−1(Xij−Mi), (8)

Φ =
1

nN

C∑

i=1

Ni∑

j=1

(Xij−Mi)Ψ
−1(Xij−Mi)

T . (9)

The two steps are iterated until the Frobenius distance of

two consecutive estimates is less than a selected threshold.

In the experiment of Section V, an order of 10 iterations

were enough to reach convergence with a threshold of 10−5.

The Bayes optimal LDA features for this problem are y =
TT vec(X), where the d columns of Tmn×d are selected as

the most significant eigenvectors of

Σ−1SB = (Ψ ⊗Φ)−1(SBR ⊗ SBL) (10)

In order to calculate these Bayes optimal LDA features

using matrix-variate operations, denote the eigenvalues and

eigenvectors of Φ−1SBL or Ψ−1SBR by λi or γj and ui

or vj respectively, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let

λi and γj be ordered in descending order. It can be shown

that instead of the LDA linear operator T, we can calculate

the same features using a bilinear operation consisting of the

spectral and spatial linear operators U and V:

U = [u1,u2, . . . ,um], V = [v1,v2, . . . ,vn]. (11)

The proposed matrix-variate LDA (MLDA) procedure

projects X onto columns of U and V to get Y = UTXV.

Then the elements yij of Y which correspond to the d largest

γiλj values are selected and stacked in a y feature vector.

Therefore, this proposed method belongs to the overall

category of tensor-to-vector projection methods [13]. Tab. I

outlines the pseudo-code for training the MLDA method.

The MLDA solution relies only on the m- or n-

dimensional operations. Therefore, the computational com-

plexity of the eigendecomposition step for MLDA is broken

down into O(m3 + n3), compared to LDA’s complexity

of O((mn)3). In MLDA, the two eigendecompositions of

order O(m3) and O(n3) can be implemented in parallel.

Furthermore, the lower-dimensional parameters can be esti-

mated more reliably than the higher-dimensional parameters

Inputs:

- Ni training samples Xij , 1 ≤ j ≤ Ni for each class Ωi, 1 ≤

i ≤ C. The total number of samples is N .
- The number of desired extracted features d.

Outputs:

- The feature extraction operators Um×m and Vn×n.
- The corresponding γi and λj values which determine the priority

in selecting the elements of the resulting feature matrix.

Procedure:

1) Estimate the parameters Φ and Ψ using a modified version of
iterative algorithm of [12], and the parameters Mi, 1 ≤ i ≤ C,
and M as sample means of the classes and their average.

2) Calculate SBL and SBR according to (6) and (7).
3) Calculate the eigenvalues λi and γj and the corresponding

eigenvectors ui, 1 ≤ i ≤ m, and vj , 1 ≤ j ≤ n, for
Φ−1SBL and Ψ−1SBR respectively.

4) Construct U and V according to (11)

TABLE I: Pseudocode for training the proposed MLDA

feature extractor.

required by LDA. Finally, unlike similar methods such as

2DLDA, MLDA provides Bayes optimal features for the

underlying data model, and also specifies the relative priority

of all the extracted features in terms of the corresponding

γiλj values.

V. SIMULATIONS

We will compare our proposed feature extraction method,

MLDA, against the LDA and 2DLDA methods based on the

corresponding classification performance on a BCI data set.

To have a fair comparison, a simple linear Gaussian classifier

is utilized with these feature extractors.

A. Data Set and Preprocessing

Data set V from BCI competition III [14] is selected which

contains EEGs of three normal subjects recorded in four ses-

sions, using 32-electrode Biosemi system at 512Hz sampling

rate. Each record consists of sequential 15-second trials of

three possible mental imagery tasks: left-hand movement,

right-hand movement, and generation of words beginning

with a random letter. The last session is used for testing

and the rest for training. The goal of competition is to

classify the mental task every 0.5 second using only the last

second of data. The highest correct classification rate (CCR)

for this competition without post-processing is %62.72 [15].

For comparison purposes, three different versions of prepro-

cessed data have been studied in this section:

• 32-Channel Spectrum: A short-time Fourier transform

(STFT) with a Hamming window of length one second,

with overlapping factor of 15

16
, is applied to the raw data

available in the dataset. Then, 12 power spectral features

from 8-30Hz (α and β band) with 2Hz resolution are

retained. This results in spatio-spectral patterns X12×32.

• 8-Channel Spectrum: The 8 centro-parietal channels

(C3, Cz, C4, CP1, CP2, P3, Pz, and P4) are recom-

mended by the competition organizers to be correlated

to the motor imagery tasks. This prior information is
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TABLE II: Classification results for different feature extractors.

Data (m× n) Method
Subject a Subject b Subject c Avg.

%CCR d #Iter %CCR d #Iter %CCR d #Iter %CCR

32-Channel
LDA 56.04 2 50.53 2 47.45 2 51.34

Spectrum (12× 32)
2DLDA 39.81 22 (2× 11) 10 40.56 18 (3× 6) 10 38.24 30 (5× 6) 10 39.54
MLDA 65.88 33 13 56.07 5 14 52.55 14 12 58.17

8-Channel
LDA 61.14 2 51.79 2 46.56 2 53.16

Spectrum (12 × 8)
2DLDA 61.54 88 (11× 8) 10 51.79 96 (12× 8) 10 46.56 96 (12× 8) 10 53.30
MLDA 64.23 5 11 53.32 42 9 49.68 23 10 55.74

8-Channel Precomputed
LDA 75.8 2 61.52 2 52.06 1 63.13

Spectrum (12 × 8)
2DLDA 76.48 72 (12× 6) 10 61.52 96 (12× 8) 10 53.21 11 (11× 1) 10 63.74
MLDA 79.68 9 8 66.82 17 6 54.59 1 7 67.03

used to retain only 8 channels from the 32-Channel

spectrum. This results in spatio-spectral patterns X12×8.

• 8-Channel Precomputed Spectrum: As part of this data

set, a set of precomputed 8-channel spectrum for centro-

parietal channels is provided, in which a spatial filtering

is applied to the raw data prior to the STFT.

B. Results

Tab. II outlines the correct classification rate (CCR) of

our proposed MLDA method for all three versions of the

preprocessed data, and compares it to the performance of

LDA and 2DLDA methods. From this table, the proposed

MLDA method consistently outperforms LDA and the exist-

ing 2DLDA method. This result demonstrates the fact that

MLDA combines the Bayes optimality advantage of LDA

and the reliable matrix-variate estimation of 2DLDA. The

improvement with respect to LDA is most evident for the 32-

channel data. In this case, the original dimensionality of the

data is relatively large, and hence the reliable matrix-variate

parameter estimates used by MLDA result in a significant

advantage over LDA. Furthermore, the better performance

of MLDA in 32-channel data compared to 8-channel data

indicates that MLDA performs a better task of channel

filtering than the traditional channel selection strategy.

It should be noted that 2DLDA has not significantly

superseded LDA in any data set, since the matrix-variate

advantage of 2DLDA has not compensated its deviation from

Bayes optimality. Furthermore, although the optimal number

of features for MLDA is larger than that for LDA, it is

generally fewer than that for 2DLDA. In cases where only a

very low number of features is desirable, a two-stage MLDA

and LDA operation can also be an alternative.

The number of iterations of MLDA for the ML estimation

of Φ and Ψ is also reported in Tab. II. The convergence

threshold for the estimation algorithm is selected as 10−5.

It can be observed that consistently for all data sets, conver-

gence is achieved with a moderate number of iterations.

VI. CONCLUSIONS

A theoretically Bayes optimal matrix-variate formulation

of LDA called MLDA was introduced based on a matrix-

variate Gaussian model. The assumed model provides a

reasonable approximation for EEG data. And if the model

is satisfied, the MLDA solution provides Bayes optimality.

Compared to LDA, MLDA provides a reduced computa-

tional complexity, allows for possibility of parallel training

of spatial/spectral operators, and most importantly, utilizes

more reliable parameter estimates. Furthermore, compared to

the existing 2DLDA method, the proposed MLDA method

can determine the most discriminant features, according to

Fisher’s criterion, for an arbitrary reduction in the dimension.

In particular, the ambiguity of 2DLDA in the selection of the

number of extracted rows and columns is obviated in the new

formulation.
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