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Abstract— The administration of hemodialysis (HD) 

treatment leads to the continuous collection of a vast quantity of 

medical data. Many variables related to the patient health 

status, to the treatment, and to dialyzer settings can be recorded 

and stored at each treatment session. In this study a dataset of 

42 variables and 1526 patients extracted from the Fresenius 

Medical Care database EuCliD was used to develop and apply a 

random forest predictive model for the prediction of 

cardiovascular events in the first year of HD treatment. A 

ridge-lasso logistic regression algorithm was then applied to the 

subset of variables mostly involved in the prediction model to 

get insights in the mechanisms underlying the incidence of 

cardiovascular complications in this high risk population of 

patients. 

I. INTRODUCTION 

 echnological advancements in the form of computer-

based patient record software and personal computer 

hardware are making the collection of and access to health 

care data more manageable. However, few tools exist to 

evaluate and analyze clinical data after they have been 

collected and stored. Very large quantities of data are 

generated through the health care process. Evaluation of 

stored data can lead to the discovery of trends and patterns 

hidden within the data that could significantly enhance our 

understanding of disease progression and management 

[1][2]. Techniques are needed to search large quantities of 

clinical data for these patterns and relationships. 

 End stage renal disease (ESRD) patients need to be treated 

with dialysis treatment at least three times per week. The risk 

of death in patients with ESRD is high despite advances in 

the dialysis care. Cardiovascular deaths occurring among 

dialysis patients are approximately 30 times higher than in 

the general population [3], so chronic renal failure (CRF) has 

recently been defined as a ‘vasculopathic state’ [4]. The 

understanding and proper management of the determinants 

of cardiovascular disease have therefore become a major 

focus of nephrology care. The pathogenesis of 
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cardiovascular damage in CRF patients is far more complex 

than in the general population, since the risk factors include 

those identified in the general population and additional risk 

factors typical of CRF. The epidemiological picture of the 

actual end-stage renal disease (ESRD) population shows a 

patient population with a growing proportion of "elderly 

individuals" and a high incidence of co-morbidities 

(diabetes, hypertension, congestive heart failure, multiple 

organ failure...). This is mainly due to the general increase in 

the number of patients admitted to renal replacement therapy 

(RRT) [5]. Risk factors in the general population include 

smoking, hypertension, diabetes mellitus, physical inactivity, 

inflammation-related factors. Their prevalence in the ESRD 

population is high because of the progressive aging of 

dialysis patients, the metabolic derangement caused by renal 

failure and because of the aetiology of the underlying renal 

disease. In addition, hemodynamic and metabolic risk 

factors, peculiar to CRF, further enhance the cardiovascular 

risk. These include hemodynamic overload due to plasma 

volume expansion and arterio-venous fistula, anaemia, 

hyperparathyroidism, electrolyte imbalance and increased 

oxidant factors. 

 When  dialysis therapy is administered in hemodialysis 

(HD) clinics a large amount of treatment and patient data can 

be collected. Thus, HD databases represent a potentially very 

promising application of medical machine learning. Several 

methods have been developed to assess the burden of 

comorbidity conditions and to predict outcomes in dialysis 

patients, reflecting the increased risk compared with the 

general population [6]. Despite these efforts no conclusive 

results have been obtained in the prediction of patient 

condition course. This is mainly due to the fact that complex 

phenomena are involved in the pathophysiology condition of 

HD patients and in HD treatment outcome. 

 The high prevalence of cardio-vascular diseases (CVD) at 

the start of RRT suggests that the mechanisms leading to 

cardiovascular impairment have been operating early in the 

pre-dialysis phase of chronic renal disease. Cardiovascular 

state at the beginning of RRT strongly influences patients' 

outcome and it needs to be taken into account in the estimate 

of hemodialysis cardiovascular risk [7].  

 The aim of the present study is the development of 

"machine learning" methods to stratify incident HD patients, 

i.e. ESRD patient starting HD treatment for the first time in 

their life, with respect to the risk of cardiovascular and life-
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threatening events. This work aims at assessing the impact of 

physiological and treatment variables trends and values on 

short-term mortality (1 year of follow-up) and/or incidence 

of cardiovascular complications. 

II. MATERIALS AND METHODS 

A. Database description 

Data used in the present study have been extracted from 

EuCliD, a clinical database designed by Fresenius Medical 

Care to monitor the key aspects of haemodialysis treatment. 

In particular EuCliD is a potentially useful database because 

it contains all the hemodialysis treatment-related information 

of patients treated in Fresenius Medical Care clinics. 

Specifically, this is a follow-up study of incident dialysis 

patients treated in Fresenius Medical Care clinics in Spain. 

Data about patients, data about each HD session, and 

monthly blood tests collected during the first year of 

hemodialysis treatment, have been extracted. Time series of 

treatment and blood test variables were obtained. The first 

challenge of the present work was to transform the temporal 

series database into a "static" database. The chosen approach 

was to extract features such as mean values and trends from 

the first 6 months of temporal series to predict patient course 

in terms of cardiovascular events (classified as "diseases of 

the circulatory system" in the ICD-10 coding, excluding 

cerebrovascular and veins and lymphatic vessels diseases) in 

the following six months. 166 patients had cardiovascular 

events during the time period of interest. 1360 patients had 

neither events nor kidney transplantation during the first year 

of HD and were included in the control group. 

B. Outcomes and variables of interest 

The primary outcome of prediction is the occurrence of 

one or more of the following cardiovascular events: a) all 

cause mortality, b) the incidence of cardiovascular 

comorbidity, c) cardiovascular hospitalization during the 

second semester of hemodialysis treatment. Thus the primary 

interest was to predict the occurrence of cardiovascular 

events in the next months, i.e. a binary classification. 

Treatment variables included in the prediction model were: 

mean values of blood pressure and heart rate measurement 

before and after each HD session (HD pre and HD post), 

weight loss trend during the first three months, mean value of 

fluid removal at each HD session, HD modality 

(hemodialysis or hemodiafiltration, HDF), dialyzer blood 

flow mean value (values in the first two month were not 

considered due to adjustments in the treatment strategy), 

number of hypotension events in the first 6 months of 

treatment. Mean values of some blood test variables 

concentration. The age of patients at HD initiation date and 

categorical variables about comorbidities such as diabetes, 

heart disease, angina, peripheral vascular disease, non-mortal 

cardiovascular events in the first semester of treatment were 

also included. Overall this resulted in a data set of 42 

variables. The complete list of variables is shown in Tab.1. 

In the obtained dataset there were no missing values for the 

treatment variables and a missing value percentage between 

5% and 15% for blood test variables. Missing values were 

substituted in the data set by the mean value of the 

corresponding variable. 

C. Machine learning  methods 

A random forest is a classifier consisting of a collection of 

tree-structured classifiers. Each tree casts a unit vote for the 

most popular class at each input [8]. A forest of trees is very 

difficult to interpret in terms of possible underlying 

mechanisms. In some applications, analysis of medical 

experiments for example, it is critical to understand the 

interaction of variables that is providing the predictive 

accuracy. A start on this problem is made by using internal 

out-of-bag estimates, and verification by reruns using only 

selected variables. 

Suppose there are M input variables. M additional random 

forests were constructed and in each forest the values of the 

m
th

 variable are not included in the database. The out-of-bag 

data are run down the corresponding tree and the 

misclassification rate given on testing set is saved. This is 

repeated for m = 1, 2, ... , M and the M misclassification 

rates are compared with misclassification rate obtained using 

all the variables obtaining a measure of the importance of 

each variable in the model.  

In this study, a random forest composed by 500 trees was 

implemented and Gini impurity index criterion was used to 

split the nodes. Then scores of variables importance were 

obtained and those with score higher than 5% were selected. 

These variables were used to run a lasso logistic regression 

to better understand their correlation with the output labels. 

The lasso-ridge algorithm is a popular statistical method for 

regression that uses a penalty term to achieve a sparse 

solution: only variables significantly involved in the 

regression model have non-null coefficients [9]. 8 fold cross-

 
Fig. 1.  a) ROC curve obtained on the test data with the random forest 

model. AUC value is 74.2%. b) Proportional representation of positive 

(yellow and green areas) and negative (blue and red areas) cases and their 

classification at best cut-off point: sensitivity is 71.6% and specificity is 

66.7%. This is an intuitive representation of the confusion matrix. 
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validation was used to select the best penalization term value 

for the regression  model. 

III. RESULTS 

The random forest model was applied to the dataset 

randomly selecting half of the patients to be included in the  

training set and using the remaining part as testing set. A 

bootstrapping approach was used on the training set to 

improve the sensitivity of the model. Cardiovascular patients 

were randomly oversampled with replacement obtaining 

balanced classes. 

For each patient in the database the mean value of the 

prediction of all the trees in the random forest was computed 

to estimate the outcome probability. The obtained values are 

not the actual probabilities because of bootstrapping but can 

be considered un-calibrated probabilities. The model was 

trained and tested and the ROC curve for testing was 

computed: an area under curve value of 74.2% was obtained 

(Fig. 1). A cut-off point for best sensitivity and specificity 

gave a misclassification rate equal to 32.8%, sensitivity 

71.6% and specificity 66.7%.  

Only the most influencing variables in the model were 

standardized to have zero mean and unit variance and the 

lasso-ridge logistic regression algorithm was applied to 

deeply understand the underlying mechanisms involved in 

the cardiovascular outcome. It is indeed important to 

understand if values of the variables higher or lower than the 

mean lead to an increase or to a decrease in the outcome 

probability. The same training and testing set were used. 

Testing was done to assess the accuracy of the model: an 

area under the ROC significantly higher than 50% was 

obtained (66.3%). Measures of variable importance in the 

random forest model and coefficient values obtained with 

logistic regression are reported in Table 1. Variables in the 

table are ordered by the "importance scores" in the random 

forest model.  

IV. DISCUSSION 

 The choice of a random forest approach for the prediction 

of short-term cardiovascular events in incident hemodialysis 

patients is due to its simplicity, accuracy and relatively 

robustness to outliers and noise. Moreover it gives useful 

internal estimates of error, strength, correlation and variable 

importance. Looking at the ROC obtained with such a model 

(Fig. 1) it can be noted that the initial slope of the curve is 

high. Thus it suggests that the model is able to classify to 

high precision patients belonging to the cardiovascular 

events group. Patients receiving high probability values are 

mostly those that really have a cardiovascular event in the 

next few months. Indeed the model has a good sensitivity, 

higher than 70%, despite the low number of patients in the 

cardiovascular event group. 

 It is of physiological interest to investigate the variables, 

which mostly affect the probability vector i.e. the outcome of 

the random forest. Random forest models can capture linear 

and also non-linear dependencies between variables and 

TABLE I 

VARIABLE RANDOM FOREST SCORES AND LASSO LOGISTIC REGRESSION COEFFICIENT VALUES 

Variable 

Random 

Forest 

Score (%) 

Coeff. 

Value 
Variable 

Random 

Forest 

Score(%) 

Coeff. 

Value 

Mean sodium dialysate concentration (mEq/l) 12.423 0.224 Mean Pulse pressure post HD (mmHg) 5.361 0.293 

Angina 11.842 0.414 Number of hypotension events 5.177 0.172 

Mean C-reactive protein - blood test param (mg/dl) 10.955 0.284 Presence of non mortal cardiovascular events 4.955 - 

Mean Diastolic pressure (post HD) (mmHg) 10.369 -0.060 Heart disease 4.872 - 

Mean calcium - blood test param (mg/dl) 10.238 0.128 Mean PTH value - blood test param (ng/l)   4.702 - 

Mean potassium - blood test param (mEq/l) 9.976 0 Mean Diastolic pressure (pre HD) (mmHg) 4.474 - 

Mean bicarbonate dialysate concentration (mEq/l) 9.784 -0.011 Diabetes 4.210 - 

Mean Delta pulse pressure (HD post - HD pre) (mmHg) 8.272 0 Modality (0=HDF, 1=HD) 4.209 - 

Mean calcium phosphate - blood test param (mg/dl) 7.617 -0.063 Mean total fluid lost per HD session (ml) 3.683 - 

Mean Systolic pressure (post HD) (mmHg) 7.529 0 Weight percentage loss in six months (%) 3.640 - 

Mean haemoglobin - blood test param (g/dl) 7.494 -0.025 Mean Systolic pressure (pre HD) (mmHg) 3.410 - 

Mean dializer blood flow (ml/min) 7.250 0.170 Mean Delta diastolic(HD post-HD pre (mmHg) 3.198 - 

Mean Delta systolic (HD post - HD pre) 6.451 0.069 Mean creatinine (pre HD) - blood test param 

(mg/dl) 

2.505 - 

Mean Delta weight (HD post - HD pre) 6.375 0.060 Mean haematocrit - blood test param (%) 0.950 - 

Peripheral vascular disease 6.353 0.064 Mean sodium - blood test param (mEq/l) 0.605 - 

Mean totalprotein content - blood test param (g/dl) 6.306 0 Mean albumin percentage-blood test param(%) 0.054 - 

Mean dialysis urea (pre HD) -  blood test param 

(mEq/l) 

6.260 -0.234 Mean heart rate (post HD (bpm) -0.241 - 

Mean Pulse pressure (pre HD) (mmHg) 6.091 0 Dialysate temperature (°C) -1.195 - 

Mean Delta heart rate (HD post - HD pre) (bmp) 6.006 0.017 Mean phosphate - blood test param (mg/dl) -2.308 - 

Mean dialysis urea (post HD) - blood test param 

(mEq/l) 

5.913 0.264 Age (years) -2.948 - 

Mean albumin content - blood test param (g/dl) 5.367 -0.225 Mean heart rate (pre HD) (bpm) -3.976 - 
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output. The logistic regression model was used as a starting 

point to get insights into the major linear relationships 

between selected variables and the output. Variables 

improving the random forest classification rate more than 5% 

were selected. 

 The measures of variable importance (the score % in 

Table 1) showed that variables more involved in the 

classification process included: 

 sodium concentration in the dialysate; 

 presence of angina and peripheral vascular disease; 

 C-reactive protein; 

 pulse pressure, systolic and diastolic pressure values 

measured after the treatment; 

 albumin, haemoglobin and urea; 

 blood flow in the dialyzer. 

 Looking at both the variable importance score and the 

corresponding logistic regression coefficient can help to 

understand the potentiality of the used predictive modeling 

techniques. 

 Sodium dialysate concentration, the variable with the 

highest importance score, has a positive regression 

coefficient. It means that, in the logistic model, positive 

normalized values of the variable lead to an increase in the 

probability of belonging to the cardiovascular event group. 

This is in agreement with [10]: clinics which predominantly 

use a dialysate sodium of 140 mmol/l (instead of 136 

mmol/l) have increased inter-dialytic weight gains, with 

more difficult blood pressure control, and a greater 

percentage of patients requiring anti-hypertensive 

medication. This can lead to an increased cardiovascular 

risk. Moreover, the number of hypotension events was found 

to increase the risk of cardiovascular events as already 

shown [11]. In fact patients with cardiovascular problems 

(i.e. heart insufficiency) are more prone to intradialytic 

hypotension. Then, patients prone to hypotension are more 

likely to have prescribed a higher dialysate sodium 

concentration because it improves treatment tolerance to 

ultrafiltration. 

 Furthermore, as expected, the presence of angina and 

peripheral vascular disease were found to be cardiovascular 

risk factors, having high importance score and positive 

coefficient values. C-reactive protein increases in response to 

inflammation status. The positive regression coefficient 

confirms the relationship between an inflammation status and 

an augmented mortality risk [12]. Furthermore patients with 

low albumin levels, low haemoglobin, low levels of 

predialysis urea and high values of post dialysis urea were 

found to be more subject to cardiovascular events. Indeed, 

nutritional status and interdialytic weight gain are important 

mortality risk factors for HD patients [13]. Furthermore, 

blood pressure measurements before and after the treatment 

were found to be in some way predictive of cardiovascular 

events. In particular, higher values of post HD pulse pressure 

(difference between systolic and diastolic pressure), lower 

values of post HD diastolic, and higher values of post HD 

systolic pressure (measured after the treatment), all increase 

the probability of cardiovascular events. This is in 

accordance with new findings on the importance of pulse 

pressure on the preservation of the cardiovascular system 

[14]. Since this is a multivariate analysis, the increased risk 

of a cardiovascular event is dependent on a combination of 

the values of all these different variables. 

V. CONCLUSION 

A random forest model was developed and applied to a 

database of incident hemodialysis patients to predict the 

incidence of cardiovascular events in the first year of 

treatment. To gain insights into the model the most important 

variables involved in the prediction were selected. 

 Logistic regression applied to these variables enabled to 

interpret the results from a clinical and physiological point of 

view. The application of machine learning models to larger 

HD datasets will permit to understand the mechanisms 

underlying cardiovascular events and to predict more 

accurately these events. 
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