
  

   

Abstract—To study the effects of different feedback error 

amplification methods on a subject’s upper-limb motor 

learning and affect during a point-to-point reaching exercise, 

we developed a real-time controller for a robotic 

manipulandum. The reaching environment was visually 

distorted by implementing a thirty degrees rotation between 

the coordinate systems of the robot’s end-effector and the 

visual display. Feedback error amplification was provided to 

subjects as they trained to learn reaching within the visually 

rotated environment. Error amplification was provided either 

visually or through both haptic and visual means, each method 

with two different amplification gains. Subjects’ performance 

(i.e., trajectory error) and self-reports to a questionnaire were 

used to study the speed and amount of adaptation promoted by 

each error amplification method and subjects’ emotional 

changes. We found that providing haptic and visual feedback 

promotes faster adaptation to the distortion and increases 

subjects’ satisfaction with the task, leading to a higher level of 

attentiveness during the exercise. This finding can be used to 

design a novel exercise regimen, where alternating between 

error amplification methods is used to both increase a subject’s 

motor learning and maintain a minimum level of motivational 

engagement in the exercise. In future experiments, we will test 

whether such exercise methods will lead to a faster learning 

time and greater motivation to pursue a therapy exercise 

regimen.  

I. INTRODUCTION 

The goal of movement therapy is to improve function and 
quality of life in impaired individuals (such as hemiparetic 
stroke survivors or children with cerebral palsy) by 
maximizing their movement potential. This incorporates 
physical, psychological, and emotional efforts. Therapy 
robotics is mainly focused on providing a means of 
delivering the physical part of the therapy. With the 
advancements in haptics technology and development of 
immersive virtual-reality interfaces, robotic therapy regimens 
that supersede therapists’ physical exercises are being 
developed. While a human therapist initiates the motor 
learning by showing the correct trajectory of motion to the 
subject (reducing the trajectory error), in robotic therapy 
exercises, a promising teaching strategy is to emphasize the 
amount of trajectory error (augmenting the trajectory error). 

Use of feedback distortion and error augmentation in 
motor learning and adaptation has been extensively studied. 
In a study focusing on learning of fine motor movements 
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(i.e., grasping), Matsuoka et al. demonstrated that distortion 
of the visual feedback leads to changes in pinching 
movement patterns of healthy subjects [1]. Building on this 
study, the same group showed that such distortion of visual 
feedback can also be used to improve grasping function in the 
post-stroke population [2]. 

Wei et al. compared two error augmentation methods: 
visual error offsetting and visual error amplification [3]. 
Introducing maximum error in the reaching trajectory as the 
performance measure, they studied speed and amount of 
adaptation to a rotational visual field in a robotic point-to-
point reaching exercise. This study proved that these methods 
significantly increased the speed of learning in both healthy 
subjects and stroke survivors. With the same task and 
environment, Celik et al. compared progressive visual error 
offsetting, their novel error augmentation method, and the 
two methods used by Wei [4]. They used target hit time as a 
second measure of performance, in addition to the maximum 
lateral error in the reaching trajectory, and modified 
definitions for “speed” and “amount” of learning to further 
supplement the findings of Wei. 

In addition to these visual distortion methods, a physical 
reaching environment can also be distorted by haptic 
feedback. Patton et al. showed that training the same point-
to-point task, where force feedback in the direction of 
trajectory errors was provided via the robot’s end-effector, 
facilitated a higher rate of learning in both healthy and 
clinical populations [5]. Moreover, Patton et al. showed that 
practicing with error augmentation, reinforced with 
therapist’s verbal feedback, leads to a higher range of motion 
for post-stroke subjects (using p<0.1) [6]. 

While use of feedback distortion can lead to faster 
learning of reaching movements, subjects’ engagement 
within such exercises has not been studied. Sustaining an 
individual’s motivation to continue therapy should be a 
concern in designing new therapy paradigms. In fact, 
qualitative studies have shown that low motivation to comply 
with therapy leads to therapy abandonment [7], where more 
engaging exercises lower the extent of abandonment. Thus, 
the repetitive nature of massed practice of simple movements 
(like pinching and reaching) can be considered as a downside 
of such error-augmenting exercises. 

We hypothesize that combining both haptic and visual 
means of amplifying error can lead to a better learning 
pattern of point-to-point reaching motions. Moreover, as 
error amplification makes the repetitive reaching task more 
challenging, we expect to see a higher engagement during 
reaching with error amplification. Based on this, we aim to 
measure the relative effectiveness of each error amplification 
method in promoting motor learning and increasing subjects’ 

Error Amplification to Promote Motor Learning and Motivation in 

Therapy Robotics 

Navid Shirzad, H. F. Machiel Van der Loos, Member, IEEE 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

3907978-1-4577-1787-1/12/$26.00 ©2012 IEEE



  

 
Figure 1.  Left: a subject interacting with the robotic manipulandum. 

The cover that occludes the subject’s hand has been removed to show 
the robot. Right: a schematic top view of the reaching environment. 

 
Figure 2.  Top: Detailed break-out of the experiment protocol. 

Subjects were given this information prior to the start of the 
experiment. Bottom: A break-out of a training block. 

engagement in the task, in comparison with the control 
condition. In our study, 10 healthy subjects completed blocks 
of reaching tasks similar to those of [3-5] with different 
levels and methods of error amplification (i.e., low gain vs. 
high gain and visual vs. visual plus haptic), and reported their 
satisfaction, attentiveness and dominance during each block. 

In Section II of this paper we provide the details of our 
experimental and analytical methods. Section III covers 
results, Section IV discusses the results, and Section V 
concludes by reflecting on the findings of this work. 

II. METHODS 

A. Task Description 

A five-bar robot previously developed at UBC was used 
in this study (Fig. 1). Its end-effector sweeps a2-DoF 
horizontal working area of approximately 50×35 cm2. Two 
motors (Parker-Compumotor Dynaserv DR1060B) located at 
the base (at the “shoulders”) actuate the robot, and the two 
“elbow” joints are passive. The robot’s end-effector is a 
handle instrumented with a 6-axis force-torque sensor (ATI 
Industrial Automation Inc. “Mini” sensor). In this study, we 
consider only forces in the horizontal plane. Encoders 
integrated with the motors supply position feedback. Using 
TargetDisplay (MathWorks Inc.), the position of the end-
effector is visually rendered on a flat screen monitor as a 
moving dot. 

Subjects were instructed to move the movable dot to 
visual targets presented on the monitor by manipulating the 
robot handle with their non-dominant hand. In this massed 
practice training, the 17” monitor was mounted in front of the 
subject, with a cover occluding the reaching space to make 
sure that the only visual feedback was through the monitor. 
Subjects were told that the moving dot shows the actual 
position of the handle. Three targets were placed radially, 
120° apart, at a constant radius from the start position (i.e., 
middle of the screen). When a target was highlighted, 
subjects had to move the robot handle to place the moving 
dot over the target, and then move back to the start position. 
We call each three consecutive reaches a cycle, in which the 
three targets appear in random order. 

To implement visual distortion, actual hand movement 
(handle position) was rotated 30°, and then the rotated 
position was presented as the moving dot on the monitor. 
Each subject would then train in 5 exercise blocks, receiving 
a different method of error amplification (EA) in each block, 
to learn reaching within the rotated environment. 

B. Participants and Experiment Protocol 

Ten healthy subjects participated in this study: five males 
and five females, one left-handed, with an age range of 19-
27. Subjects provided informed consent as approved by the 
Clinical Research Ethics Board of the University of British 
Columbia. To make sure the subject was cognitively intact 
and free of significant neurological impairment all subjects 
were required to score higher than 24 on the Folstein Mini-
Mental State Test. All the subjects had normal or corrected 
vision. Throughout the experiment, skin conductance 
measures were collected from fingers of the unused hand, but 
we did not use those data in this analysis. In this within-
subjects experimental design, each subject learned to reach 
within the rotated environment, experiencing the control 
condition and all the four error amplification methods. 

The experimental protocol (Fig. 2) was designed as six 
exercise blocks. In the first block, subjects performed 14 
cycles of reaching tasks without any rotational distortion (i.e., 
plain motion). Each cycle consists of one reaching motion to 
each of the three targets in random order. This block aimed to 
get subjects familiar and comfortable with the robotic 
reaching task. Following the familiarization block, there were 
five training blocks.  

Within each of the training blocks, subjects had to 
practice 10 cycles of plain motion (de-adaptation), and 13 
cycles of reaching with one of the designed challenges 
“within” the rotated environment. The five challenges (one 
per training block) utilize different methods of EA to 
promote motor learning. Each subject practiced the 
challenges in random order. The de-adaptation cycles at the 
beginning of each training block are designed to wash out the 
learning effects of the previous training block, so adaptation 
to a challenge does not carry over to the next challenge.  

At the end of each training block, we administered a Self-
Assessment Manikin (SAM) affect questionnaire, asking the 
subjects to self-report their satisfaction, attentiveness, and 
dominance, all in a range of 1-9 (low to high) [8]. Subjects 
were given a rest period upon request. On average, each 
experiment took 90 minutes. We used this blocked 
experimental design to assess the effects of each training 
challenge on motor learning and the affect of the subjects. 

Five conditions were used as challenges in training 
exercises for adaptation to the rotational field: reaching 
without EA (control), reaching with low-gain visual EA, 
reaching with high-gain visual EA, reaching with low-gain 
visual plus haptic EA, and reaching with high-gain visual 
plus haptic EA. 

Reaching without EA was used as a control condition in 
data analysis. Visual EA was implemented as described in [3] 
with two gains: a low gain of 1.3 and a higher gain of 1.65. In 
this condition, cursor location was calculated through a 
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Figure 4.     Reaching cycle trajectory error (TE) for all the EA methods. Black circles show cycle mean of maximum TE (performance metric) for each 

subject. Red squares show the average of performance metric for all subjects. Blue curves show the fitted exponential function (3) to the average of 

performance metric data. Numerical values for exponential function constants and goodness of fit are given in the right-top corner of each graph. 

 
Figure 3.    Hand trajectory of subject 4 during each of the challenge exercise blocks qualitatively shows the learning. The dashed red line shows the 

trajectories during the first reaching cycle, while the blue solid lines show the trajectories during the last two reaching cycles. As learning is independent 

of the direction of rotational field, the rotation angle was randomly varied between challenges (either -30° or 30°). 

vector summation of rotated hand position and amplified 
error vectors: 

xcursor = xhand, rotated + (visual EA gain) × e              (1) 

For the remaining two conditions, in addition to the visual 
EA, haptic feedback was given to subjects based on their 
instantaneous trajectory error. The haptic force vector, 
perpendicular to the vector from starting point to the visually 
presented target, was calculated using the following equation: 

Fhaptic = (haptic EA gain) × e                       (2) 

This haptic force was exerted onto the subject’s hand via 
the robot’s end-effector. Haptic EA gains were designed to 
map the trajectory errors to force ranges of 0-5 N and 0-8 N, 
for low gain and high gain, respectively. 

C. Measure of Performance 

Each reaching cycle consists of a motion to each of the 
three targets (i.e., three trials). For each of the trials, the 
maximum absolute deviation of the actual trajectory from the 
straight line between start and target points (i.e., the ideal 
trajectory) was calculated. The average of this value in a 
cycle (i.e., mean of maximum deviation), was assigned as the 
measure of performance for that cycle. 

III. RESULTS 

The data from the “exercise with challenge” cycles (Fig. 
2, bottom) were used in analyzing different aspects of 
adaptation. For each of the five challenge conditions, each 
subject has thirteen values for the measure of performance 
(mean maximum error of each of the thirteen cycles). Within 
each EA condition, the average of these performance metrics 
was calculated for each cycle, for all the subjects, giving 13 
performance metrics for each challenge condition. For each 
condition, an exponential function, as in (3), was fit to the 
average performance metrics [3]. 

y=ae
 –t/b

+ c                                  (3) 

In (3), y is the performance metric and t is the cycle 
number (0-12). Based on this, c will be the convergence 
value of the final performance (i.e., the best performance 
level after training within a specific condition), b represents 
the time constant of converging to the c value (higher b 
implies slower learning), and a represents the total amount of 
learning (i.e., a is the amount of decrease in the maximum 
error after practicing within the specific EA condition). 

Fig. 3 shows reaching trajectories of subject 4 in the five 
conditions. Dashed red lines are the initial trajectories and 
blue solid lines are trajectories of learned motions. Note 
higher initial errors caused by the two visual plus haptic EA 
methods. 

The performance metrics and curve fittings are given in 
Fig. 4. The following trends can be observed: Low-gain 
visual plus haptic EA shows the highest amount of learning 
(i.e., a=45 mm), followed by high-gain visual plus haptic EA, 
high-gain visual EA, and control. Low-gain visual plus haptic 
EA also has the fastest learning rate (i.e., lowest b), followed 
by the other EA conditions in the same order as the amount 
of learning. Low-gain visual EA has the poorest learning 
characteristics. However, this order is reversed for the final 
performance c. To compare the effects of different EA 
conditions on a, b, and c, we performed a within-subjects 
multivariate ANOVA, with values obtained through curve 
fitting to each subject’s performance metrics. We found that 
training with different EA methods does not lead to a 
significantly different rate of learning and final performance 
(i.e., b and c). Nevertheless, high-gain visual plus haptic EA 
leads to a significantly larger amount of learning a, in 
comparison with both of the visual EA methods (p<0.1). 

Subjects’ self-reports to the SAM questionnaire showed 
an increase in the levels of satisfaction (e.g., liking the task) 
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Figure 5.     Self-reports of affect for all the EA methods (range from 1-9, 1 being low and 9 being high). x axis shows different methods of EA, 

numbered as 1) control, 2) low gain visual EA, 3) high gain visual EA, 4) low gain visual/haptic EA, and 5) high gain visual/haptic EA. Black circles 

show a subject’s self-report value during each EA method. Red squares show the mean reported value for all subjects during each EA. 

and attentiveness during the task and a decrease in 
dominance over the task, as the EA methods changed from 
control to visual EA to visual plus haptic, and from the lower 
gain to the higher (Fig. 5). A within-subjects multivariate 
ANOVA shows that the means of each affect measure are 
significantly different between almost all pairs of conditions 
(p<0.05). The exceptions are (5 pairs): 1) level of satisfaction 
between control and low-gain visual EA, and the two visual 
plus haptic EA methods, 2) level of attentiveness between 
control and low-gain visual EA, and the two visual plus 
haptic EA methods, and 3) perceived dominance between 
high-gain visual EA and low-gain visual haptic EA. 

IV. DISCUSSION 

Comparing the means of learning speed and amount of 

learning, low-gain visual-haptic EA proved to be the best, 

followed by high-gain visual-haptic plus visual EAs. Low-

gain visual EA led to the worst learning, suggesting that a 
gain of 1.3 is not high enough to initiate learning, but it is 

high enough to make subjects confused and decrease their 

performance. The ANOVA failed to find significant 

differences between the final performance of subjects after 

training with different EA methods, which is acceptable due 

to the fact that human motor function is not perfect and 

cannot fully follow ideal trajectories.  In accordance with 

[4], we could not show significant differences between 

learning properties promoted by each EA, which we believe 

could be reversed by a more careful tuning of the EA gains. 

The only exception was the high-gain visual-haptic EA, 

which significantly improved the amount of learning in 
comparison to control and visual EA methods, proving our 

initial hypothesis of achieving better learning characteristics 

by combining haptic and visual means of providing EA. 

Moreover, looking at subjects’ engagement in the task, 

we were also able to confirm our initial hypothesis. Subjects 

tend to be more satisfied with and more attentive during the 

visual-haptic EA methods, compared with the visual EA 

methods. The control condition has the worst score for 

satisfaction and attentiveness. High satisfaction and 

attentiveness can be associated with high engagement in the 

task. Dominance follows a trend in the opposite direction, 
meaning that comparing the control condition with visual 

EA methods and also visual-haptic EA methods, the 

reaching task becomes more difficult and challenging to 

accomplish. We can argue that a higher challenge within the 

reaching tasks makes the repetitive nature of them less 

boring and this can lead to a higher satisfaction with the 

task. Similarly, completing a more challenging task requires 

a higher level of attention. 

V. CONCLUSION 

This study has replicated the performance improvements 

seen in previous reaching task studies that have used visual 

and/or haptic error augmentation to influence motor learning 

rate and extent. More importantly, we have shown 

significant differences in affect (specifically: satisfaction, 

attentiveness and dominance) between progressively more 

exaggerated error amplification conditions, even when 

presented in random order to subjects.  Understanding these 

differences will be critical in the subsequent phase of our 

research, in which we use affect to design a bio-cooperative 

system that maximizes both learning and the individual’s 

engagement in a reaching task during physical therapy.  
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