
  

 

Abstract—Brain-computer interface (BCI) provides patients 
suffering from severe neuromuscular disorders an alternative 
way of interacting with the outside world. The P300-based BCI 
is among the most popular paradigms in the field and most 
current versions operate in synchronous mode and assume 
participant engagement throughout operation.  In this study, 
we demonstrate a new approach for assessment of user 
engagement through a hybrid classification of ERP and band 
power features of EEG signals that could allow building 
asynchronous BCIs. EEG signals from nine electrode locations 
were recorded from nine participants during controlled 
engagement conditions when subjects were either engaged with 
the P3speller task or not attending. Statistical analysis of band 
power showed that there were significant contrasts of attending 
only for the delta and beta bands as indicators of features for 
user attendance classification. A hybrid classifier using ERP 
scores and band power features yielded the best overall 
performance of 0.98 in terms of the area under the ROC curve 
(AUC). Results indicate that band powers can provide 
additional discriminant information to the ERP for user 
attention detection and this combined approach can be used to 
assess user engagement for each stimulus sequence during BCI 
use. 

I. INTRODUCTION 

rain-computer interface (BCI) is an emerging and 
rapidly growing research area that enables the 

development of systems that bypass the brain’s normal 
communication pathways of nerve and muscle, allowing the 
brain to communicate directly with the external world. 
Clinical applications of BCIs are targeted for patients 
suffering from severe neuromuscular disorders to provide 
them with an alternative way of interacting with the world.  

The P300-based BCI is among the most popular paradigm 
in the field due to its ease of use, high performance and 
reliable signal it can offer [1]. Classification of signals in 
BCI relies on the P300 event-related potential (ERP) that is 
elicited in the oddball paradigm. In a P300-based BCI, 
sequences of visual or audio stimuli are presented to the 
users of the BCI who are asked to focus their attention on 
the occurrence of rare target stimuli among more frequent 
non-targets. The P300 waves are generated by the brain after 
the user recognized the target stimuli. These P300 waves are 
then detected and translated to perform actions such as 
turning on a switch in environmental control, or choosing a 
letter during a spelling task [1].  
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Research on the P300-based BCI has been mainly focused 
on three areas: 1) Stimulus presentation paradigm, which 
concerns designing different presentation modes such as 
row/column, single cell and checkerboard for faster 
communication speed, better ERP signal to noise ratio or to 
enhance user experience. 2) Feature extraction and 
classification algorithms, which involves developing 
algorithms to translate EEG signals into actions more 
accurately, and 3) novel applications. A detailed review of 
the current status and future directions of P300-based BCI 
research can be found in [1]. Most BCI systems proposed in 
the literature are synchronized, requiring that users must 
follow the pace of the BCI system and that they have no 
control of when to start and stop using the BCI. A more 
practical BCI should allow users to interact with it in an 
asynchronous manner. To achieve this goal of interactive 
asynchrony, it is critical to determine whether or not the user 
is attending to the BCI system. 

An asynchronous P300-based BCI was first proposed by 
Zhang et al [2] and studied by various other groups [3-6].  
These studies can be grouped into two categories according 
to the methods applied for user attention detection: those 
based on statistical analysis of the P300 wave amplitude 
features, such as [2-4]; and those based on a hybrid BCI, 
such as in [5] where the steady state visually evoked 
potentials (SSVEP) paradigm were applied in conjunction 
with the P300 paradigm, and in [6] where the event-related 
desynchronization (ERD) paradigm was employed. 

In this study, we investigated using band powers as 
features for user attention detection. It has been long known 
in the literature that ERP is related to the rhythmic activity 
of the brain [7-10]. However, most of the studies 
investigated rhythmic activity using time-frequency analysis 
during the time course of P300 activity. It is still unknown 
whether band powers are capable of characterizing whether 
a user is attending (engaged actively) to the P300-based 
BCI. To investigate this band power active engagement, we 
first compared the delta (0.5-4Hz), theta (4-8Hz), alpha (8-
13Hz) and beta (13-30Hz) activities of subjects when they 
were actively engaged in the P300-based BCI to those times 
when they were not engaged. Secondly, we used the 
rhythmic activities of selected bands and channels as feature 
for user attention classification.  

II. MATERIALS AND METHODS 

A. Participants 

Ten right-handed volunteers (ages between 20 to 24 
years) participated in the study but one subject was excluded 
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due to missing synchronization communication. All 
participants stated that they have no neurological or 
psychiatric history and gave written informed consent 
approved by the institutional review board of Drexel 
University for the experiment. All participants reported that 
they had no prior experience with BCI. 

B. Experiment setup 

All data acquisition was inside a Faraday cage for 
electromagnetic and sound insulation. Participants sat 
comfortably inside the Faraday cage with two monitors 
positioned on a desk in front of them.   The right hand side 
monitor displayed the customized P300 stimulus which was 
implemented using the BCI2000 framework [11]. The left 
hand side monitor displayed the task outcome, which was in 
this case a 3-D virtual maze rendering from a first person 
view implemented using MazeSuite software [12]. The P300 
stimulus was presented in a 3×3 matrix that contained iconic 
representation of nine actions: move forward, move 
backward, turn right, turn left, slide right, slide left, trigger, 
jump and look around. We described the details of utilizing 
P300 for spatial navigation control in [13]. 

C.  Recording 

EEG data were recorded using Neuroscan Synamps 2 
from nine locations according to the 10-20 international 
system: FCz, Cz, CP3, CPz, CP4, P3, Pz, P4, and Oz based 
on the performance evaluation in [14]. The reference and 
ground position used are A1 and A2, respectively. Data were 
sampled at 1000Hz and band pass filtered from 0.5 to 60Hz. 
A notch filter was also applied at 60Hz to remove possible 
noise from power source. 

D. Protocol 

Visual stimuli were generated by randomly intensifying 
columns and rows of the P3speller matrix provided by 
BCI2000. The stimulus duration was 80ms and the inter-
stimulus interval (ISI) was 160ms so the stimulus onset 
asynchrony (SOA) was 240ms.  The ERP window of each 
epoch was set to be 0-1000ms after the onset of a stimulus. 
There were three types of epochs: target epoch, whose onset 
was target stimulus; non-target epoch, whose onset was non-
target stimulus; and control epoch, during which the subjects 
were not attending the P3speller. A sequence included six 
epochs. In a sequence, each column and row of the matrix 
was intensified exactly one time. A run was consisting of 
several sequences. There were two types of runs: attended 
run and control run. During the attended runs, subjects were 
instructed to focus on one icon of the matrix and count the 
number of times this icon is intensified. After each single 
attended run, one action was classified and outputted to the 
maze.  In control runs, subjects focused on the maze screen 
waiting for instruction or configuring the next action they 
intended to make during maze navigation. A session 
comprised of several attended and control runs. 

There were two experimental stages in our protocol: 
training and testing, each containing several sessions. At the 

beginning of each stage, subjects performed a few runs 
under the instruction of the experimenter to get familiarized 
with the protocol. 
1) Training.  

There were three repeated sessions in this stage. Each 
session included 12 attended runs and 12 control runs. Each 
attended run was followed by a control run. All runs were 
comprised of 10 overlapping sequences (See Figure 1). In 
attended runs, subjects focused their attention on P300 
stimuli for selection of the action they were instructed to 
perform during the last control run. In control runs, subjects 
focused their attention on the maze screen for the instruction 
of the next action. At the end of each attended and control 
run, a visual notification was shown on the currently 
attended screen instructing the subject to direct their 
attention to the opposing screen.   
2) Testing.  

Prior to testing stage, a classifier was trained based on 
the stepwise linear discriminant algorithm in BCI2000 for 
online classification. During the testing stage, subjects went 
through two sessions. In each session, subjects were 
instructed to navigate within several mazes using the P3 
speller from the starting point to the exits. The first session 
included three randomly ordered ‘T’ shape and ‘double T’ 
shape mazes. The second session included two large mazes. 
For the large mazes, directions to the exit were shown on the 
screen to make the task easier. The control run in the testing 
stage comprised of only six sequences, for the purpose of 
reducing the total experiment time. 

 
Fig.1 Schematic representation of a session. Each session included 12 

attended runs and 12 control runs. Each run included 10 sequences. In each 
sequence there were 6 flashes (epochs).  

E. Data processing and classification 

The data processing and attendance classification was 
performed on each single sequence. More specifically, it was 
from the onset of the first stimulus of a sequence to 1000ms 
after the onset of the sixth (and last) stimulus of the 
sequence, i.e. 5 ൈ ܣܱܵ  1000 ൌ  data. A ݏ2200݉
threshold based approach (peak-to-peak amplitude) has been 
applied to reject artifact containing sequences [15]. We 
employed three methods for attendance classification which 
was dependent on the different features used for 
characterization: 
1) Band power 

We estimated power spectral density for each sequence 
using a periodogram. A two-way repeated measures 
Analysis of Variance (ANOVA) analysis with Attendance (2 
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levels: attending, not-attending) and Band (4 levels: delta, 
theta, alpha and beta) was calculated for each electrode 
signal. Geisser–Greenhouse correction was used for 
sphericity and Tukey's post hoc tests to determine the locus 
of band power main effects. Post-hoc comparisons of 
interactions were computed using planned contrasts of 
attendance  at each band power. For classification, stepwise 
linear discriminant analysis (SWLDA) was applied to reduce 
over-fitting. Other common classification algorithms such as 
multilayer perceptron, support vector machine and lasso 
regression have been investigated with similar results. For 
all tests, the significance criterion set at α=0.05. 
2) ERP score.  

Each sequence of data was further divided into six 
overlapping epochs from the onset of each stimulus. To 
downsample the signal, we calculated the averages of non-
overlapping 50ms data blocks for each epoch. The target 
epochs and non-target epochs were labeled as 1, the no-
control epochs were labeled as 0. The SWLDA was used to 
train classifiers for discriminating the control epochs from 
the rest. The aim of this was not to classify the target epochs 
as in  [3] but to detect overall presence of any P300 within 
the sequence.  The ERP score for each sequence was defined 
as follows: 
 

ாோݏ ൌ ݔܽ݉
ୀଵ,ଶ,ଷ

௪ݏ 	 ݔܽ݉
ୀଵ,ଶ,ଷ

ݏ
  

 
Where ݏ௪  and ݏ

  were scores given by the classifiers for 
the ݄݅ݐ row and column epoch, respectively.  
3) Hybrid.  

In the hybrid method, we used the logarithmic band power 
features selected in 1) and the ERP scores given in 2) for 
characterization. A SWLDA algorithm was then applied for 
classification.  

III. RESULTS 

A. Statistical Comparisons 

The band powers from each run were subjected to a two-
way repeated measures ANOVA analysis. The results 
indicated significant main effects of Band (delta, theta, alpha 
and beta) and Attendance and interaction of Band with 
Attendance. Significant results are reported in Table 1. 

 

 
Note:  * p < 0.05, # p < 0.01, ^ p < 0.001 

 
Fig. 1. Average band power from all subjects depicts a significant 
difference in Delta band. This representative figure from Cz electrode is 
similar to other electrodes. Error bars are standard deviations. 

B. Attendance classification 

For comparing the effectiveness of the three classification 
methods, we first performed a 3-fold cross-validation on the 
training data (using two data sessions for classifiers training, 
one data session for making predictions). Then, we trained 
classifiers on the training data and made predictions on the 
testing data. We used the area under curve (AUC) of 
receiver operating characteristic (ROC) curve as the criterion 
for performance evaluation. In this classification, the true 
positive represents the rate of attended runs that have been 
successfully detected. False positive exemplifies the rate of 
control runs that have been incorrectly classified as attended 
runs. The results are reported in Tables II and III. 

 

 

 
Results indicate that performance of the band power 

method was comparable to that of ERP score method 

TABLE I 
STATISTICAL ANALYSIS  

Electrode Band Attendance Interaction Contrast1 Contrast4 
F (3,24) 
 

F (1,24) 
 

F(3,24)  T (55) 
Delta  

T (55) 
Beta  

FCz 61.71^ 46.64^ 27.93^ 6.614^ NS 
Cz 45.17^ 43.30^ 21.30^ 4.885^ NS 
CPz 33.72^ 48.03^ 13.92# 3.731^ NS 
CP3 26.92^ 50.17^ 35.55^ 4.834^ NS 
CP4 29.59^ 32.27^ 13.45# 3.469# NS 
Pz 30.32^ 71.90^ 12.99# 3.608^ NS 
P3 22.95^ 71.54^ 25.21^ 4.116^ NS 
P4 32.22^ 58.18^ 11.37# 3.459# NS 
Oz 31.40^ 71.47^ 14.63# 4.909^ 2.138* 

TABLE II 
AUC VALUES FROM 3-FOLD CROSS-

VALIDATION OF TRAINING DATA 

Subject 
Band 
Power 

ERP 
score 

Hybrid 

1 0.963 0.988 0.996 
2 0.903 0.884 0.954 
3 0.950 0.915 0.974 
4 0.932 0.986 0.992 
5 0.969 0.959 0.986 
6 0.852 0.939 0.962 
7 0.943 0.978 0.990 
8 0.937 0.920 0.977 
9 0.988 0.973 0.997 
Avg. 0.937 0.949 0.981 

TABLE III 
AUC VALUES FROM TESTING DATA USING 

CLASSIFIERS TRAINED ON TRAINING DATA 

Subject 
Band 
Power 

ERP 
score 

Hybrid 

1 0.891 0.987 0.992 
2 0.950 0.864 0.966 
3 0.923 0.911 0.950 
4 0.905 0.967 0.979 
5 0.987 0.970 0.995 
6 0.919 0.959 0.980 
7 0.889 0.960 0.974 
8 0.978 0.906 0.983 
9 0.975 0.879 0.984 
Avg. 0.935 0.933 0.978 
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whereas the hybrid method provides the best classifications 
for each subject. 

Next, we evaluated the classification threshold for a false 
positive value smaller than 0.02 based on the ROC curves of 
the training data cross-validation results and made 
predictions on the testing data. For the maze navigation task 
a low false positive is desirable. For other tasks, this 
constraint can be relaxed to allow a higher true positive rate. 
The results were shown in Table IV and Table V. Overall, 
the band power method gave satisfactory false positives but 
poor true positives. In contrast, the ERP score gave poor 
false positive but satisfactory true positive. The hybrid 
method gave the most satisfactory results in terms of both 
false positive and true positive. 

 

 

IV. DISCUSSION 

In this study, we investigated band powers as potential 
features to detect user’s attendance toward a P3speller. 
Results showed that user attendance characterization 
performance of band powers were comparable to the 
conventional approach (that is by using P300 wave 
amplitudes). A hybrid classification using both features 
yielded the best overall performance (See Table II and III) 
which suggests that there is complementary independent 
information in each of these features. It has been shown that 
the evoked P300 waveform in visual/auditory oddball 
paradigms has a frequency characteristic in the delta–theta 
range [7, 16].  Most studies focused on single trial analysis, 
however, in this study, our aim was to look at a larger 
window and utilize frequency characteristics that evolve 
over a sequence instead of a single trial (See Fig 1) with the 
most important difference due to attendance change in the 
delta band. 

The user attendance detection approach proposed in this 
study can be implemented to run in parallel with a P3 speller 
target detection algorithm to improve the BCI reliability and 
usability. The scores given by the new classifier may serve 
as an index of how actively the user is engaged with the 
P300 speller. Moreover, this approach can be used to build 
self-paced / asynchronous BCIs. However, further 
investigation is required to include control runs when 
subjects are engaged in different tasks such as arithmetic, 
listening to music and so forth to test the robustness of the 
proposed algorithm with other types of BCI. Future work 
will include testing the proposed algorithm online and also 
with clinical subject populations such as ALS patients and in 
real world environments.  
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TABLE IV 
ATTENDANCE CLASSIFICATION FOR TRUE POSITIVE 

Subject 
Band 
Power 

ERP 
score 

Hybrid 

1 0.21 0.96 0.91 
2 0.38 0.46 0.57 
3 0.60 0.46 0.66 
4 0.38 0.81 0.82 
5 0.46 0.80 0.83 
6 0.14 0.60 0.71 
7 0.28 0.74 0.74 
8 0.48 0.50 0.84 
9 0.47 0.59 0.81 

Avg. 0.38 0.65 0.76 

TABLE V 
ATTENDANCE CLASSIFICATION FOR FALSE POSITIVE 

Subject 
Band 
Power 

ERP 
score 

Hybrid 

1 0.000 0.071 0.012 
2 0.013 0.028 0.003 
3 0.021 0.007 0.014 
4 0.014 0.014 0.000 
5 0.000 0.011 0.004 
6 0.004 0.007 0.000 
7 0.024 0.018 0.018 
8 0.000 0.036 0.000 
9 0.004 0.081 0.017 

Avg. 0.009 0.031 0.007 
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