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Abstract— Recent research has shown that a P300 system
can be used while walking without requiring any specific gait-
related artifact removal techniques. Also, standard EEG-based
Brain-Computer Interfaces (BCI) have not been really assessed
for lower limb rehabilitation/prosthesis. Therefore, this paper
gives a first baseline estimation (for future BCI comparisons)
of the subjective and objective performances of a four-state
P300 BCI plus a non-control state for lower-limb rehabilitation
purposes. To assess usability and workload, the System Usability
Scale and the NASA Task Load Index questionnaires were
administered to five healthy subjects after performing a real-
time treadmill speed control. Results show that the P300 BCI
approach could suit fitness and rehabilitation applications,
whereas prosthesis control, which suffers from a low reactivity,
appears too sensitive for risky and crowded areas.

I. INTRODUCTION

Since its beginning, Brain-Computer Interface (BCI) re-

search has focused on increasing performance without really

considering the patient himself [1]. Actually, classification

accuracy or information transfer rates have often been used to

show the superiority of one paradigm or one method against

another. For a long time, new world records were emphasized

and some of them were presented as a revolution for heavily

disabled patients or for potential gamers that could use BCI

as an additional input.

However, although information transfer rate and

classification accuracy are important, they only represent a

part of a reality. As a proof of that, BCI applications are

known for having a very high abandonment rate, i.e. users

quickly give up using the system. As a proposition towards

a better acceptance rate, some subject-based feedback

questionnaires were suggested. The most famous ones are

the System Usability Scale (SUS), the NASA Task Load

Index (NASA-TLX) and for games, the Game Engagement

Questionnaire, which measure the usability, the cognitive

load and the engagement, respectively [1].

One of the most noble BCI purposes is rehabilitation.

Developments in that field have allowed several main steps.

Hand grasping was made possible thanks to detection of

Steady-State Visual Evoked Potential (SSVEP) that arises
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when looking at a flickering image at a higher frequency

than 6 Hz [2]. This allows one to grasp or release an object.

In [3], a patient could control a wheelchair by modulating

his EEG signals thanks to three different mental states.

Recently, interesting locomotion-related studies have ap-

peared using Electroencephalography (EEG). Several re-

searchers have focused on the analysis of spontaneous brain

signals during the gait cycle [4], [5]. Other researchers have

even claimed that a decoding of EEG signals is easy to

obtain using linear decoding scheme [6]. However, as re-

viewed in [7], those studies could somehow show incoherent

and/or subjective results. Actually, when performing a time-

frequency analysis [4], similar results can be obtained with

an accelerometer signal positioned on the head as with

the claimed EEG-based cortical signals. Additionally, no

distinction between descending (command) and ascending

(feedback) signals has been done making it impossible to

know whether a prosthesis could be controlled that way.

On top of that, these studies have only been conducted at

artificially low-speeds to attenuate artifacts (under 2.5 km/h,

a range of walking speeds for which the gait style is more

erratic and quite different from standard walk [8]) or without

considering accelerations. All these weaknesses suggest that

a lot of research has to be done before understanding all

aspects of locomotion cortical control.

This is why a more robust and close-to-market but less

natural scheme using gait modeling and a standard BCI has

been proposed in [9]. Inspired from biology, this approach

uses Central Pattern Generators (CPGs) widely used in

robotics. These CPGs can model automatic gait patterns

based on kinematics. When the patient wants to modify the

gait pattern frequency, i.e. the gait speed, he uses a standard

BCI with high-level commands. A proof of concept with a

non natural P300 paradigm was given in [10]. Actually, the

P300 evoked potential is an involuntary positive potential

that arises around 300 ms after the user has perceived a

relevant and rare stimulus [11]. One strong advantage of

this approach is the spontaneous aspect of P300 implying

very low requirements to manage the interface. Furthermore,

although the P300 is known to be less efficient than the

SSVEP, this study has a double interest as argued in [12]:

P300 is more suitable for people suffering from epilepsy

or people having difficulties in accurately controlling eye

muscles. On the other hand, an external screen is needed to

produce the potential and solutions like the augmented reality

eyewear (Vuzix, Rochester, NY, USA) have to be envisaged

to display stimuli on a semi-transparent module.
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In order to compare this approach to other BCI pipelines,

the main objective of this paper is to propose a first baseline

estimation of the P300 BCI objective and subjective perfor-

mances in the framework of lower-limb fitness, rehabilitation

and prostheses. To simulate such applications, a strong

feedback was introduced by controlling the speed of the

treadmill subjects were walking on.

In this paper, section 2 describes the P300 approach, the

pipeline and the experiment description. Section 3 details

the subjective and objective performance measures. Section

4 presents and discusses the results.

II. P300 SYSTEM

This section first details the P300 approach. Then, the

acquisition system and the pipeline are explained. Finally,

the experiment and its purpose are presented.

A. P300 Approach

Following previous work [10], we are interested in a four-

speed BCI managing a non-control state, which does not send

any instruction to the orthosis control system. The screen is

composed of two rows and two columns representing Low,

Medium and High speed states and the Stop state as depicted

in Figure 1. This arrangement could mimic the corner of the

Vuzix eyewear. The different speeds respectively correspond

to 1.5, 3 and 4.5 km/h whereas the Stop state simulates the

standing state (0 km/h).

To modify the current speed, the subject has to focus on

the corresponding letter during a whole trial. After randomly

flashing each row/column, the different P300 responses and

the assumed letter can be detected. On the other hand, when

the subject does not want to modify the speed, i.e. during

the non-control state, he does not look at the screen and no

P300 response is elicited.

Fig. 1: P300 visualization is divided into four states: Low-speed,
Medium-speed, High-speed and Stop. A fifth state is detected by
the system when the user is not looking at the screen.

B. P300 Pipeline

EEG was recorded using a 32-electrode cap connected to

the ANT acquisition system (Advanced Neuro Technology,

ANT, Enschede, The Netherlands) digitizing the signals at

512 Hz. Left ear was chosen as reference. Mastoid was not

used because of possible pollution from EMG signals of the

neck while walking. Electrode impedance was measured and

maintained under 20 kΩ for each channel using electrode gel.

Following [10], providing the EEG signals downsampled

at 32 Hz, the pipeline was composed of several main

components: a temporal high-pass filter, an xDAWN-based

spatial filter [13], an epoch averaging and a Linear Discrim-

inant Analysis (LDA) classifier using a voting rule for the

final decision sent to a Virtual Reality Peripheral Network

(VRPN) server [14].

The frequency band of interest was obtained by high-

pass filtering the EEG signals (1 Hz cutoff) through a 4th

order Butterworth filter. Thus, after the downsampling, the

undesired slow drift in the measurement and high-frequency

noise such as power line interference were removed [15].

Afterwards, a spatial filter was designed using an xDawn

algorithm [13]. By linearly combining EEG channels, this

algorithm defines a P300 subspace. When projecting EEG

signals into this subspace, P300 detection is enhanced.

Then, the resulting signal was epoched using a time

window of 600 ms starting immediately after the stim-

ulus. Groups of two epochs corresponding to a specific

row/column were averaged and magnitude features were

extracted over the windows. The flash, no flash and inter-

repetition durations were respectively 0.2 s, 0.1 s and 1 s.

Finally, a 12-fold LDA classifier was applied to each

two-grouped averaged time windows giving a value which

represents the distance to a hyperplane separating at best

the target/non-target classes. For a given trial, in a voting

classifier, the row/column, which had been activated was

determined by summing six consecutive LDA outputs (12

repetitions) and by choosing the maximum value. The de-

cision was sent to a VRPN server to finally automatically

control the treadmill speed [14].

In this pipeline, neither standard or gait-related artifact

removal methods were used. Regarding gait artifact, it was

shown that it is relatively small and not significant at

low speeds in the waveform [16]. Moreover, on the basis

of classification rates, current gait-related artifact removal

methods are not significantly efficient compared to raw data

in the context of a low-cost embedded system [17].

C. Experiment Description

Following [10], the experiment was twofold: a two-step

training session and a realistic test session. The first part of

the training session aimed at training the classifiers to detect

the P300 response. It consisted of 25 trials of random letters

(around 12 minutes). Then, a session of 10 trials of non-

control state was recorded while the subject was not looking

at the screen. This aimed at determining a threshold (by

a Receiver Operating Characteristic (ROC) analysis) from

which the voting rule result was significant. A practical

application should not make mistakes while the subject is

not looking at the screen given that this state has a higher

probability of occurrence (except in city center). Moreover,

this kind of mistakes would force the subject to frequently

re-adjust the current speed due to misclassification of non-

control states and would destabilize him due to unexpected

speed modifications. In other words, the False Positive Rate

(FPR), i.e. the number of non-target elements classified as
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target ones divided by the total number of non-target, should

be as low as possible. In the ROC analysis, the threshold was

set around FPR=1%.

Then, the test session aimed at controlling the overall

system working in real-time. It consisted of a 60-target

session (around 30 minutes) in order to get sufficient data

to obtain a good overview of the system performance.

Before each trial, a beep was emitted to indicate that a

trial would start within three seconds. At this point, the

subject declared what his target was and focused on it

until it was properly recognized. This simulated a real

use scenario and allowed an assessment of the objective

performance measures. After this correct recognition of a

target letter, the subject did not look at the screen during

one trial to simulate the non-control state. Additionally,

a uniform distribution of commands was requested and

checked during the experiment. In order to assess the need

for concentration, after the middle of the experiment, the

experimenter spoke with the subject to detect potential

influence on control failures.

Four male and one female subjects (with age between 22

and 34 years old) participated in this experiment. Subject

3 never had any experience with a BCI system before

the experiment. A 20-inch screen was placed at about 1

meter in front of the subject. Subjects were healthy and did

not have any known locomotion-related or P300 disturbing

diseases or handicaps. After the experiment, each subject was

administered SUS and NASA-TLX questionnaires described

here below (they were familiarized with them before doing

the experiment). Finally, an interview about the answers was

performed to identify the system strengths and weaknesses.

III. PERFORMANCE MEASURES

In this section, the measures of performance are described.

First, following [18], the main focus is on subjective feed-

back measures including SUS and NASA-TLX question-

naires. Then, objective measures, composed of classification

rate, non-decision rate and error rate, are introduced.

A. Subjective Feedback Measures

The System Usability Scale (SUS) questionnaire has been

proven to be a reliable, robust and low-cost usability evalu-

ation tool that can be used for global assessment of system

usability. Moreover, it has become a standard survey among

thousands of studies as reported in [19]. This allows one to

grade the studied interface and compare it with other surveys.

The SUS questionnaire is composed of ten items using

a Likert scale. Each item corresponds to a statement and

the respondent has to indicate the degree of agreement or

disagreement on a 5 (7) point scale. Here, on top of that, a

global single item evaluation was asked as proposed in [19].

This is graded from the worst imaginable (0) to the best

imaginable (6) through OK (3). After properly scoring and

weighting the different ten statements, a SUS score can be

derived. The higher the SUS value, the better the system is.

Another widely used questionnaire is the NASA Task

Load Index (NASA-TLX) [20]. This is a brief and powerful

questionnaire for workload evaluation.

This questionnaire follows a two-step procedure. First,

subjects have to rate six different item subscales which assess

mental demand, physical demand, temporal demand, effort,

frustration and performance. Each item is rated using a 20-

temporal step bipolar scale resulting in a score between 0

and 100. In addition to detailed instructions, a pair of words

are written at each extremity of the scale to help subjects.

Given that there are two very different tasks (control and

non-control), the evaluation was done 1) on a global basis

and 2) focused on control commands.

The second step aims at determining the source of loads.

By performing pair-wise comparisons based on the most

contributive load item, the subject can determine the weight

of each item in the overall workload. By computing the

weighted average, a NASA-TLX score is obtained. But, in

this study, this weighting was not used.

Some questions are really dependent on the application.

Thus, subjects were asked to separately consider fitness and

rehabilitation on a treadmill (which are quite close to the

experiment considerations). They were also asked to consider

the case of a prosthesis in a general context. Obviously, given

that this latter application is quite different from the actual

experiment, subjective results are less reliable but can give

an indication. Of course, in case of small handicaps that

are not considered for this latter application, very efficient

techniques based on purely mechanical systems are available

(for instance, for ankle prostheses [21]).

B. Objective Performance Measures

Given the specific design of the system, three objective

measures were used. The classification accuracy is defined as

the ratio between the number of correctly recognized targets

and the total number of targets.

The non-decision rate is computed as the ratio between

the number of non-control states and the number of trials

when a command control is supposed to be emitted.

The error rate is defined as the resulting rate when a

command control is emitted.

IV. DISCUSSION

In this section, results are firstly discussed relying on

objective measures. Then, subjectives measures and results

of interviews are exposed.

Considering objective measures, results indicate desired

functioning. Indeed, as depicted in Table I, no error occurred

over all the experiments, which represent a real-time test

of two and a half hours. As explained in [10], the price

to pay for this “reliability” is a non-zero non-decision rate.

This rate sometimes nearly reached 10% (no difference was

observed by subjects while speaking during the test). This

indicates that decreasing the number of repetitions to speed

up the system is quite risky. To obtain the same behavior of
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providing commands when the system is quite certain, this

would require a higher non-decision rate. On the other hand,

being less conservative in the ROC analysis would provoke

more unwanted speed modifications that could force the user

to re-adjust his current speed more frequently, which could

discourage him. In an end-user application, a trade-off should

be made depending on the subject profile/feelings. However,

all the subjects said that they preferred the conservative ap-

proach, which gives the impression of a sufficiently reliable

system (even if they did not strictly test another approach).

Moreover, it avoids some fears of suddenly modifying the

speed when the subject was not prepared to.

TABLE I: Objective results show that the system is working as
desired. It makes no error at the expense of a non-zero non-decision
rate that can nearly reach 10%. However, all the non-control states
are perfectly recognized.

Subject Classification Non-decision Non-control classification

1 93.5% 6.5% 100%

2 90.6% 9.4% 100%

3 90.6% 9.4% 100%

4 96.8% 3.2% 100%

5 100% 0% 100%

Mean 94.3% 5.7% 100%

STD 4.1% 4.1% 0%

Considering questionnaires completed by the five subjects,

results depicted in Table II are roughly just passable in

terms of usability but subjects need a relatively low cog-

nitive load. Based on SUS questionnaires, for fitness and

rehabilitation, the system passes the acceptable threshold

of 70 as defined in [22]. Consistently with the one-item

global SUS score, the system can be defined as good. On

the other hand, such a P300-based prosthesis system is on

the edge of reaching this acceptable usability but can only

be defined as marginal (high). Given the specific framework

of daily use, and, as stressed on by several subjects, the

slow reactivity and the risk of non-recognition in case of

emergency stop are highly damaging. Additionally, this is

not really adapted for crowded places, i.e. typically a place

where many speed modifications have to be done. However,

some subjects indicated that this approach could be suited for

leisurely walk in large areas. According to them, this could

be a way for heavily disabled people to walk outside again.

More interestingly, all subjects agreed that, excluding those

drawbacks, the global approach is a nice way to control. This

suggests that if the system can be increased in reactivity, it

would be more broadly accepted.

Regarding NASA-TLX values, workload is below average.

Indeed, workload during control seems to be slightly less

important than a previous P300 study about an interface

control (browser, word processing, software configuration,

etc.) but close to average [23]. However, when considering

the entire system, workload drastically drops. This shows

that the entire system is perceived as a low workload

demanding system with peaks during control commands

that are relatively easily manageable. For a prosthesis

application, a more important frustration is noticed again

because of the context that increases risks and the need for

reactivity and reliability.

Several subjects pointed out some weak points that could

be enhanced to significantly increase the usability. Firstly,

a technical support is generally desired, at least, at the

beginning. This could be highly improved by using a user-

friendly EEG cap with dry electrodes if similar performances

are provided. This will also contribute to getting a less

cumbersome device. Secondly, the loss of control is one

fear of subjects. In addition to a recognition error in risky

situations, the stress can provoke another error, etc, until a

crash/an abandonment. Thirdly, as expected, the synchronous

functioning is quite penalizing and an asynchronous system

would be more appreciated. Fourthly, one subject proposed

a system with acceleration/deceleration command instead of

fixed speeds in order to avoid too important unwanted speed

variations and to provide a more flexible system.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a first estimation of the subjective

performance of a P300 BCI-based for lower-limb

rehabilitation purposes is provided. In this experiment,

the treadmill speed was used as a feedback. Performances

were assessed on an objective basis (classification, error

and non-decision rates) and on a subjective basis (SUS

and NASA-TLX questionnaires). Five healthy subjects

participated in this experiment.

Regarding objective measures, the system is working as

designed. Over the five subjects, no error occurred at the

expense of the non-decision rate that could sometimes nearly

reach up to 10%. Generally, this specific working allowing

not to detect a command state when information appears

to be too uncertain was well appreciated. Even if they did

not test another approach during the experiment, subjects

found the tested approach rather reliable. Although they

could feel uncomfortable with the non-decision rate, they

prefer avoiding an unexpected speed modification.

Regarding subjective measures, mixed results appear.

According to subjects, this approach could suit fitness and

rehabilitation but not really prostheses. More precisely, they

consider that such a prosthesis control system could be

used in large areas, e.g. for promenades, but not in crowded

and risky areas, e.g. city center. This is mainly due to the

lack of reactivity and to the non-decision rate at critical time.

Future work will be devoted to refine these results on a

larger population, to study the longitudinal performances and

to enhance the P300 system based on user feedback. This

includes asynchronous control [12], [24].

Then, it will focus on the study of several BCI paradigms.

Typically, following a within-subject experimental design,

P300, SSVEP and EOG-based eye movements interfaces will

be compared [25]. Moreover, when a better understanding of

spontaneous gait signals will be available, this assumed more

natural but less stable interface will also be considered.
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TABLE II: Comparing SUS and Global SUS scores, results are consistent with [22]. Moreover, it indicates that this P300 approach seems
to be more suitable for fitness and rehabilitation than prosthesis mainly due to the lack of reactivity. Considering the overall workload, it
appears to be quite small in average and the overload peaks reached during control states are smaller than [23].

SUS (Global SUS) NASA-TLX Global (Command)

Fitness Rehabilitation Prosthesis Fitness Rehabilitation Prosthesis

Subject 1 87.5 (4) 87.5 (4) 77.5 (4) 20 (39.16) 20 (39.16) 25 (44.16)

Subject 2 57.5 (2) 67.5 (4) 62.5 (3) 10 (43) 10 (41.6) 10 (42.16)

Subject 3 80 (5) 75 (5) 70 (5) 25.8 (46.6) 25.83 (46.33) 27.5 (48.33)

Subject 4 77.5 (4) 75 (4) 67.5 (2) 20.8 (33.3) 24.16 (36.6) 27.5 (42.5)

Subject 5 77.5 (4) 72.5 (3) 67.5 (3) 14.16 (26.66) 18.33 (30.83) 21.66 (34.16)

Mean 76 (3.8) 75.4 (4) 69 (3.4) 18.15 (37.7) 19.66 (39) 22.33 (42.262)

STD 11.1 (1.1) 7.43 (0.71) 5.47 (1.14) 6.15 (7.9) 6.19 (5.85) 7.3 (5.15)

ACKNOWLEDGMENT

M. Duvinage is a FNRS (Fonds National de la Recherche

Scientifique) Research Fellow. The authors want to express

their gratitude for the financial support provided by Fonds
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