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Abstract— In this study, a Brain Computer Interface (BCI) 
based on the P300 oddball paradigm has been developed for 
spatial navigation control in virtual environments. 
Functionality and efficacy of the system were analyzed with 
results from nine healthy volunteers. Each participant was 
asked to gaze at an individual target in a 3x3 P300 matrix 
containing different symbolic navigational icons while EEG 
signals were collected. Resulting ERPs were processed online 
and classification commands were executed to control spatial 
movements within the MazeSuite virtual environment and 
presented to the user online during an experiment. Subjects 
demonstrated on average, ~89% online accuracy for simple 
mazes and ~82% online accuracy in longer more complex 
mazes. Results suggest that this BCI setup enables guided free-
form navigation in virtual 3D environments. 

I. INTRODUCTION 

RAIN Computer Interface (BCI) systems translate brain-
derived non-muscular signals into new pathways of 

communication and control [1]. These new mechanisms 
provide a direct channel from brain activity to action, acting 
as a potential alternative to neuromuscular control in cases 
where such routes are compromised, or serving in a 
supplementary nature for healthy individuals. BCI research 
efforts principally focus on the restoration of communication 
for patients suffering from crippling neuromuscular diseases 
such as amyotrophic lateral sclerosis (ALS), and 
neuroprosthetic control in amputees and spinal cord injury 
victims. However BCI has been recently extended towards 
non-disabled individuals with applications in gaming, 
entertainment, and 3D virtual environments. 
 BCIs designed for use in virtual environments provide 
several advantages to researchers. Use of interactive 
feedback from the task, increases protocol engagement and 
subject motivation, two factors which have been associated 
with improved BCI performance [2] along with reducing 
training times [3]. Virtual reality BCI systems have been 
implemented to prototype control of physical systems such 
as wheelchair and other robotic systems [4, 5], as well as 
provide test-bed platforms for further BCI development [6]. 
 The P300 spelling matrix BCI first described by Farwell 
and Donchin [7] is considered one of the classic BCI 
systems. It relies on the elicitation of the P300 event-related 
potential (ERP) through an oddball paradigm of randomly 
intensified icon rows and columns. The P300 component of 
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the ERP is associated with a positive peak that develops 
approximately 300ms after a rare stimulus is intensified. By 
instructing participants to focus on a particular target, the 
intensification of that target will produce a stronger P300 
than non-target intensifications. After online processing, 
classified results were used to drive a virtual alpha-numeric 
keyboard. P300-based BCI systems possess the advantages 
of rapid development, minimal training times and relatively 
high information transfer rates [8]. 

The use of P300 for spatial navigation has not been fully 
explored but has been described for virtual and physical 
control of wheelchair systems involving automated 
navigation have been reported in literature [9, 10]. Another 
study used a P300 system which featured position selection 
as a component of a virtual environment control system in 
which the subject’s avatar was automatically moved to a 
specified virtual destination [11]. Additionally a study 
adapting a four-direction P300 cursor control system to a 
four door selection task has been reported [12]. In that study, 
each room in the virtual environment was identical, and 
additional icons next to targets were used to identify the 
desired action rather than information from a spatial task. 
  This paper documents the development and demonstration 
of a P300 based BCI system that allows guided free-form 
spatial navigation in complex virtual 3D environments. A 
new P300 matrix was developed that controls navigation 
from first person view in the virtual environment. The 
system was created through the integration of two freely 
available software packages: the BCI2000 framework [13] 
and the MazeSuite virtual environment platform [14-16]. 

II. MATERIALS AND METHODS 

A. Subjects 

Ten (9 male, 1 female) healthy right-handed (Edinburg 
Handedness Inventory[17] LQ = 64±23.75) participants aged 
19-23 (mean age=22.1) volunteered to participate in the 
experiment however one subject was discarded due to 
technical issues with recording equipment (N=9). Each 
individual gave written informed consent through 
documentation approved by the Drexel University IRB and 
answered demographic and survey questions related to the 
protocol.  Participants were paid for their time, self-selected 
based on exclusion criteria concerning drug usage and 
prescription medications known to have psychiatric effects, 
and all self-reported no prior experience in BCI use or 
research. 

B. EEG Setup 

Data acquisition was completed using a Neuroscan 
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Synamps2 40-channel EEG amplifier on a Windows XP 
computer running Neuroscan Acquire 4.5. EEG 
measurements were taken from 9 electrode sites (FCz, Cz, 
CP3, CPz, CP4, P3, Pz, P4, Oz) according to the 
international 10-20 system with A1 and A2 serving as 
reference and ground locations. Recordings were taken using 
a sampling frequency of 1 kHz with a software band pass 
filter between 0.5Hz and 60Hz and an additional notch filter 
at 60 Hz to remove electrical line noise. Measurements were 
recorded by Acquire and transferred to BCI2000 using the 
NeuroscanAccess module, and finally to a custom analysis 
module in Matlab for online processing.  

 

C. Experimental Setup 

Subjects were seated at a comfortable distance in front of 
a two monitor display system with an independent computer 
controlling each monitor. BCI stimulus presentation was 
performed using a modified BCI2000 P3Speller application 
on the computer running the EEG acquisition software 
labeled Acquisition PC (See Fig.1). The navigational matrix 
was presented on the right-hand side monitor. Commands 
processed from the collected EEG signals were forwarded to 
the second computer, labeled Visualization PC in Fig.1 and 
rendered using the MazeSuite interactive virtual 
environment software with the environment presentation 
occurring on the left-hand side adjacent monitor. A dual 
computer setup was chosen to allow more flexibility with the 
online-processing and to prevent such processing from 
interfering with display of the environment. Communication 
between the two devices was handled through TCP/IP using 
a component of the MazeSuite API. Recordings took place 
in a faraday cage to minimize subject distraction from the 
task as well as shielding from electromagnetic interference 
in the EEG signal. 

D. BCI Protocol 

BCI presentation was performed using the BCI P3Speller 

application and follows the classic P300 spelling matrix 
paradigm [7]. The navigational matrix consisted of a 3x3 
icon set with symbolic actions indicated by an image. 
Standard actions made available to the user included 90 
degree turns, left/right strafe, jump, a 360 degree 
“lookaround” function, forward and backwards motion. 
Each column and row of the matrix was flashed randomly 
for 80ms for 10 sets with an interstimulus interval of 160ms, 
representing a total of 20 flashes per icon, and a total 
presentation time of 14.4 seconds. The ERP window for 
each epoch was assigned as 0-1000ms after stimulus onset. 
Subjects were asked to gaze at the target icon and count the 
number of times the target icon flashed. After each set of 
flashes, the recording was processed by Matlab using a step-
wise linear discriminant algorithm (SWLDA), and the 
resulting classification was forwarded to MazeSuite for 
execution of the virtual movement command.  

The subject was informed of the system’s activities by a 
series of dialogues which directed the user to attend either 
the matrix, or the virtual environment using instructions such 
as “Look at Matrix” given 2 seconds before initiation of the 
P300 stimulus and “Look at Maze” given just after the P300 
stimulus period ended. 

 

E. Task Protocol 

The experimental procedure was divided into three 
phases, lasting a total of 90 minutes after consent and setup. 
Subjects were offered breaks between phases and they were 
naïve to the virtual environments used in the study. 

The first phase served as a training segment with two 
goals in mind-- first, to familiarize the user with the P300 
elicitation task as well as the functions of the navigational 
matrix, and second, to calibrate the system to the subject’s 
individual P300 response. Subjects were presented with a 
“single-action” environment in which the required action 

 
Fig. 1. Schematic diagram of experimental system: Acquired EEG 
data were analyzed by the acquisition PC. Stimulus timing and 
presentation was handled by the acquisition PC. Classifications based 
on extracted P300 components were forwarded as command signals to 
the MazeSuite PC where the virtual environment was updated. 

Fig. 2. Schematic representation of navigational task protocol: Phase 
1 contained 3 sets of 12 “single-action” environments, each ordered 
randomly. Phase 2 contained 2 mazes with 3 repetitions each in a 
pseudorandom order. Phase 3 contained 2 long guided mazes 
presented sequentially. Top down representations were not shown to 
subjects. 
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was clearly indicated to the subject via presentation of the 
target icon. After examining the environment for a short 
period of time, the subject was asked to engage in the BCI 
task.   

Recorded signals and target/non-target information were 
used for online training of the SWLDA classifier. After 
classification and execution of maze movement, the next 
“single action” environment was loaded. Three sets of 12 
environments were completed with a short break between 
sets. 

The second phase presented the user with several short 
“T-shaped” maze environments in order to test system 
accuracy and introduce the user to sequential command 
execution for navigation. Subjects were presented with two 
different short mazes labeled “T” and “Double-T”, three 
times each in a random order. Subjects were asked to 
navigate to a clearly marked exit. The exit location could be 
in one of four different corners such that subjects needed to 
search by navigating to different directions. After 
successfully reaching the end of the maze, the next 
environment was loaded.  

The final phase consisted of two long guided mazes with 
the intention of measuring the user’s performance in a 
complete navigational task. Each maze contained a clearly 
marked path to the exit door and the next environment was 
loaded upon completion.  

During the second and third phases, subjects were asked 
to record their intended actions using a number-pad 
matching the style of the navigational matrix in order to 
analyze BCI classification accuracy post-hoc. This input was 
not used to inform the online SWLDA classifier. 

III. RESULTS 

A. Phase 1 Offline Performance 

Results from the naïve classifier presented to the subject 
during training of the classifier are inherently error-prone, 
therefore Phase1 accuracy and bitrate of each set was 
assessed using classifiers trained from the remaining two 
sets using step-wise linear regression for off-line cross-
validation purposes. Mean classifier accuracy vs. number of 
stimuli sequences for the cross-validation is shown in Fig 3.  

 

After a total of 10 sequences the mean classifier accuracy 
was reported as 91.4% with standard deviation of 15.4%. 

B. Online Performance 

Bitrates per trial were calculated according to the equation 
described in [8]. 

 

ܤ ൌ logଶ ܰ ൅ ଶܲ݃݋݈ܲ ൅ ሺ1 െ ܲሻ logଶ
ଵି௉

ேିଵ
    (1) 

 
where N is the total number of available targets and P is 

the accuracy of the classification.  
 
During online performance, classified actions were 

compared to recorded intended actions. Mean bitrates were 
calculated for each phase and for the overall accuracy for 
Phase 2 and Phase 3 which are listed in Table I and II. 
Bitrates in this study have been reported as ‘per trial’ due to 
a design choice to lengthen the inter-trial periods.   

 

 
 
 

 

IV. DISCUSSION 

EEG-BCI systems have become increasingly accessible 
due to reductions in the cost of equipment, and the 
availability of specific software platforms such as the 
BCI2000 [13]. The P300 based control paradigm has been 
classically investigated for spelling tasks and more recently 
for additional control mechanisms. Use of the P300 based 
control paradigm for virtual environments is still not fully 
explored [9, 10] especially for spatial navigational control 
and problem solving (way-finding). 

 This study demonstrated a new P300 based BCI for 
spatial navigation control in virtual 3D environments that 
subjects used for searching exits and way-finding tasks. 

Fig. 3. Phase 1 offline cross-validation: Mean classifier accuracy 
vs. number of stimuli sequences. 

TABLE I 
PHASE 2 ACCURACY AND MEAN BITRATE 

Trial 1 2 3 4 5 6 Mean Bitrate 
Subject Accuracy 
1 75.0 100.0 100.0 100.0 100.0 100.0 95.8 2.80
2 62.5 75.0 83.3 80.0 60.0 100.0 75.0 1.61
3 71.4 100.0 66.7 100.0 100.0 66.7 84.0 2.06
4 80.0 100.0 75.0 100.0 75.0 100.0 86.4 2.19
5 80.0 66.7 80.0 60.0 66.7 55.6 66.7 1.25
6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 3.17
7 100.0 100.0 100.0 100.0 100.0 75.0 95.8 2.80
8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 3.17
9 83.3 100.0 100.0 100.0 100.0 100.0 96.2 2.82
Mean 83.6 93.5 89.4 93.3 89.1 88.6 88.9 2.33

Bitrate is reported per trial (14.4s/trial). 

TABLE II 
PHASE 3 AND OVERALL ACCURACY AND MEAN BITRATE 

 Phase 3   Overall 
Subject Trial 1 Trial 2 Mean Bitrate  Mean Bitrate
1 89.5 100.0 94.7 2.71  95.2 2.75
2 80.0 51.6 62.7 1.10  67.8 1.30
3 70.8 50.0 60.0 1.00  68.0 1.31
4 71.4 63.3 66.7 1.25  72.6 1.50
5 76.9 72.0 73.7 1.55  70.3 1.40
6 100.0 94.4 97.0 2.88  98.2 2.99
7 100.0 90.5 94.4 2.69  95.0 2.73
8 94.7 76.2 85.0 2.11  90.6 2.44
9 100.0 100.0 100.0 3.17  98.2 2.99
Mean 87.0 77.6 81.6 1.93  84.0 2.06

Overall accuracy is recorded as the accuracy over all Phase 2 and 3 
trials. Bitrate is reported per trial (14.4s/trial). 
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These capabilities were tested using abbreviated “T shaped” 
labyrinths and guided way-finding tasks in longer more 
complex environments. Subjects achieved an average online 
accuracy of 84% using the proposed system. Online system 
performance from subjects included in the study is on par 
with other previously reported P300 interfaces [8, 18] where 
results between 80 and 95% for online accuracy are common 
and higher values for offline accuracy are often noted. It has 
been previously reported that BCI accuracy rates above 70% 
indicate lower threshold for system communication [8]. 

 Virtual environments were designed and rendered using 
MazeSuite software which is a set of tools developed at 
Drexel University and provides researchers a platform for 
the rapid design, development and deployment of 3D virtual 
environments for use in controlled spatial and navigational 
studies [15]. We have already demonstrated an optical BCI 
with MazeSuite using Functional Near Infrared 
Spectroscopy [14]. Future work will include expanding the 
subject pool and providing this system to serve clinical 
populations such as ALS patients. The proposed system also 
opens the door for more complex BCI based navigational 
tasks for use in both research and multimedia/gaming 
applications. These applications could include acceptable 
performance in noisy environments and real world settings. 
MazeSuite development will continue to provide a testing 
ground for future BCI methods and applications. 
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