
  

 

Abstract— Brain-computer interface (BCI) systems translate 

brain activity into messages or commands. BCI studies that 

record from a dozen or more subjects typically report 

substantial variations in performance, as measured by 

accuracy. Usually, some subjects attain excellent (even perfect) 

accuracy, while at least one subject performs so poorly that 

effective communication would not be possible with that BCI. 

This study aims to further explore the differences between the 

best and worst performers by studying the changes in 

estimated accuracy within each trial in an offline simulation of 

an SSVEP BCI. Results showed that the worst performers not 

only attained lower accuracies, but needed more time after cue 

onset before their accuracies improved substantially. This 

outcome suggests that poor performance may be partly (though 

not completely) explained by the latency between cue onset and 

improved accuracy. 

I. INTRODUCTION 

A brain-computer interface (BCI) system is a device that 
translates a user’s brain activity into messages or commands 
in a closed-loop system with feedback. These messages or 
commands might be used to control a variety of devices, such 
as spelling systems, smart home devices, or prosthetic limbs 
[1, 10, 17, 18]. This article focuses on non-invasive BCIs, 
which comprise the substantial majority of BCI publications 
[12]. 

Among non-invasive BCIs, three types of brain signals 
are typically used for control. Some BCIs rely on Event-
Related desynchronization (ERD) activity associated with 
imagined movements [8], others rely on P300 signals elicited 
whenever a target item flashes [9], and a third category relies 
on SSVEP activity resulting from attention to oscillating 
objects [14].   

With any BCI, improving accuracy is a major goal. For 
reasons that are not fully understood, some people have 
trouble using BCIs well, and a small minority of subjects 
cannot use BCIs at all [23]. In previous work, we collected 
data from a large number of BCI users chosen from the 
general public, hoping to explore how many people could 
attain different accuracies. With ERD and P300 research, 
these efforts successfully identified performers at different 
skill levels [8, 20]. However, the only large-scale effort with 
SSVEP used substantially different methods, and did not 
record EEG, leaving no data available for further analysis 
[22]. Moreover, while all of these studies identified people 
who did not perform well, none of them explored the 

 
This research was supported by the EU Projects BrainAble (Project 

number 227447), VERE (Project number 257695), Decoder (Project 

number 247919), as well as the multinationally funded ALIAS project. 
C. Guger, C. Hintermueller, R. Prueckl, B. Großwindhager,  

C. Kapeller, and G. Edlinger are with  g.tec medical engineering GmbH, 

Guger Technologies OG, Herbersteinstrasse 60, 8020 Graz, Austria 
B. Z. Allison is with the Department of Cognitive Science, University of 

California at San Diego, La Jolla, California, USA. 

resulting EEG data to identify why some subjects performed 
poorly. 

One way to explore causes of poor SSVEP BCI 
performance is to analyze the changes in their performance 
over time. Typically, articles that estimate or analyze BCI 
performance within a trial only report the peak accuracy 
within that trial. Although this approach is common in the 
literature [4, 13], it may obscure important dynamics within 
each trial [3, 6]. Other factors such as the mean accuracy, the 
latency between cue onset and acceptably accurate 
classification, and the accuracy at the end of the trial might 
reveal information about brain dynamics across different 
users that cannot be detected via peak accuracy measurement 
alone. 

Hence, we have been exploring the estimated accuracy 
within a trial from a large number of subjects with an online 
simulation of an SSVEP BCI. To date, 53 subjects 
participated in the paradigm described below, and more data 
may be collected. Our goal here is not to report on the 
complete results, which would be beyond the scope of this 
paper. Instead, we wish to compare the time courses of the 
error rates within each trial between the best and the worst 
performers, to determine whether paradigmatic changes 
might improve performance among poor performers. 

II. METHODS 

53 healthy people volunteered for this study (35 male). 
The age range was 8-73, mean age 28.72 ± 12.6. All subjects 
had normal or corrected to normal vision, and provided 
informed consent before beginning the study. There was one 
subject under 18, who participated with her parents’ consent. 
None of the subjects had prior experience with a BCI. Thus, 
the subjects were a fairly reasonable subset of the healthy 
population.  

At the beginning of the recording session, each person 
was prepared for recording using g.BUTTERFLY active 
electrodes. These electrodes require a small amount of 
electrode gel, and do not require skin preparation. Fig. 1 
shows the electrode montage used in this study. Data were 
recorded from eight posterior electrode sites positioned 
according to the International 10-20 system, with a reference 
electrode on the right earlobe and a ground electrode over site 
FPz. Data were sent to a g.USBamp amplifier sampling at 
256 Hz, with a bandpass filter of 0.5-30 Hz and a notch filter 
at 50 Hz.  
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Figure 1.  The electrode montage used in this study. The eight recording 

sites are located over posterior regions of the head, with a ground on FPz 

and reference electrode on the right earlobe. 

After being prepared for EEG recording, subjects 
participated in a training run to collect the data needed to 
train the classifier, then a test run. Subjects viewed a 
g.SSVEPbox with four LEDs, on the top, right, bottom, and 
left (See Fig. 2). During each run, subjects first had five trials 
in which the top LED was the target, followed by five trials 
each with right, bottom, and left targets. The order of these 
twenty trials was the same for all subjects. Each run began 
with a ten second delay before the first trial. Each trial began 
with a three second pause. Next, a small green light appeared 
on the box about 2 mm from one of the LEDs. Subjects were 
asked to focus their attention to the LED closest to that green 
light. Simultaneously, the four LED began to oscillate at 10 
Hz (top box), 11 Hz (right box), 12 Hz (bottom box), or 13 
Hz (left box).  

 

Figure 2.  The g.SSVEP box used to present stimuli. Each of the four 

LEDs flickered at a different frequency from 10-13 Hz.   

Subjects were asked to focus on the target LED for seven 
seconds, after which the trial ended and the lights on the 
g.SSVEPbox turned off. Next, the subjects had a short break 
between runs, during which the classifier was trained on their 
data. Then, subjects participated in a second run. This run 
was identical to the training run, except that the BCI 

estimated the accuracy online during each trial. Feedback 
was given in form of a number indicating the selected item. 
A minority of subjects chose to volunteer for one or two 
additional online runs. 

All data presentation, recording, and analysis was 
managed by g.BCIsys as shown in Figure 3. g.BCIsys uses 
Simulink as a rapid prototyping platform to run real-time 
experiments [7]. The top half of Fig. 3 summarizes the data 
collection and analysis approach. The bottom of Fig. 3 shows 
how a g.STIMbox was connected to the g.SSVEPbox to help 
generate the stimuli.  

 

 

Figure 3.  The Simulink model used for the SSVEP study. 

The pattern recognition procedure began with the 
minimum energy combination approach to determine the 
spatial filter settings that would yield the best signal-to-noise 
ratio or SNR [21]. Next, the system estimated the SNR using 
a Levinson AR Model (order 7) based on the previous 768 
sample points (3 seconds). The software updated this 
classification every 200 ms. A linear discriminant analysis 
(LDA) classifier was used for real-time pattern classification 
based on the SNR [7].  

III. RESULTS 

A. General results 

The mean peak accuracy (the average of each subject’s 
best performance) is 94%. Chance accuracy in this four-class 
paradigm would be 25%. 31 of the 53 subjects attained 100% 
accuracy. The four best subjects were defined as the four 
subjects who attained 100% accuracy in the shortest possible 
time after cue onset. Four subjects attained 100% accuracy 
within four seconds of cue onset, and retained 100% 
accuracy throughout the remainder of the trial. 

The worst four subjects attained between 70-80% peak 
accuracy. Two of them attained about 70% accuracy, and the 
next two attained 75-80% accuracy.  

 

B. Four best subjects 

Fig. 4 shows the results for the four best subjects in this 
study. Like all subjects’ results, error is high during the rest 
period before cue onset. In these four subjects, error declines 
substantially within one to two seconds after cue onset.  
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Figure 4.  The four subjects who performed best. All subjects’ estimated 
error dropped to zero within four seconds of cue onset, and remained zero 

throughout the rest of the trial. The vertical axis shows classification 

accuracy, and the horizontal axis shows the time from trial onset. The 
vertical red line at 3 seconds indicates the onset of the cue, which is also 

when the four different LEDs began oscillating.   

C. Four worst subjects 

Fig. 5 shows the results for the four worst subjects in this 
study. Although these subjects still show a reduction in error 
rates after cue onset, it tends to occur more than two seconds 
after cue onset. Furthermore, three of these four subjects’ 
error rates continue to decline at the end of the trial, implying 
that peak accuracy might improve with longer trials. 

 

Figure 5.  The four subjects who performed worst. Their peak accuracy 
was between 70-80%. The axes and the red line are described in the 

preceding figure caption.  

IV. DISCUSSION 

The peak accuracy may be less important in realworld 
studies. Since a BCI does not know which time segment 

contains the peak accuracy, the likelihood of error depends 
much more on the mean than peak accuracy. In addition, 
reporting the mean accuracy in synchronous BCIs such as 
these could help readers estimate control in a continuous task 
such as virtual movement, when maintaining high accuracy 
over seven seconds or longer may be critical [2,3]. 

A. Latency: A major delay 

Speed is a critical factor in any communication system. In 
some BCIs, one critical factor that limits speed is the latency 
between the onset of a cue that directs or helps subjects to 
perform a specific mental task and the moment that the 
resulting brain activity can be effectively classified. This 
latency may be impossible to measure, or meaningless, in 
many situations, such as with asynchronous BCIs [3, 4, 14, 
17, 18, 19] or whenever users freely choose when to change 
mental tasks, since inferring the moment of decisionmaking 
can be difficult [11]. 

This latency reflects several stages. The cue (in this case, 
a green light) must travel through the visual system. The 
subject must decide how to respond, then shift attention to 
the target stimulus and engage attention there [16]. 
Thalamocortical oscillations must lead to sufficient 
synchronous EEG activity that the classifier used in this 
study could attain an acceptable accuracy level [5, 6, 15].  

In this BCI, the latency was over two seconds for the best 
subject (shown in the top left panel of figure 3), assuming a 
reasonable accuracy threshold of 70-80% [1, 3, 12, 17, 18]. 
This is a substantial delay in any communication system, and 
further research should explore how to reduce latency in 
different BCIs. Training may help, at least with the later 
stages, as well as alternate interfaces that allow subjects to 
anticipate their next mental activity. For example, a subject 
who uses SSVEP or other activity to navigate a real or virtual 
environment could often anticipate the next intended 
movement command [2, 19]. In the present study, subjects 
very probably learned to anticipate the next target, but the 
LEDs were not active until cue onset. Alternate sensors, 
stimuli, classification software, interfaces, and other factors 
may also help. 

B. Best vs. worst performers 

As with all BCI studies, some subjects in the present 
study performed much worse than other subjects, with 
performance defined by low peak accuracy based on offline 
analysis. We found that our worst subjects differed from the 
best subjects in two other ways. First, the worst subjects 
typically required a longer latency before their error declined 
significantly. Second, the worst subjects continued to 
improve throughout the trial, and therefore a longer trial 
might be advantageous.  

Of course, subjects who attain 100% performance cannot 
improve further. However, this result could be relevant for 
poor performers, because it implies that longer trials might 
yield better performance.  

An alternate outcome was possible, since our analyses 
might have revealed that poor performers did not improve 
throughout the trial. In this case, longer trials would not have 
helped. Instead, the present study suggests greater attention to 
the dynamics of brain activity, and associated accuracy 
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measures, within (at least) SSVEP BCI systems. 
Furthermore, the results suggest that, to some extent, worse 
subjects might simply be slower. That is, the difference in 
accuracy between good and bad performers might be reduced 
with longer trials. It is also conceivable that training poor 
performers could help both accuracy and latency. If 
performance improves with longer trials, then poor 
performers might learn how to focus attention better within a 
shorter time. However, latency only partly explains poor 
performance. Worse subjects are not just slower. 

This work was based on offline analyses. Although these 
analyses can provide reasonable estimates of online 
performance, using methods similar to those described here 
[3], we recommend following up with an online BCI. 
Another critical future direction involves patients. The 
present study only used healthy subjects, while patients may 
have different performance dynamics due to visual deficits, 
medication, fatigue, neuropsychiatric conditions such as 
hemineglect, etc. 

V. CONCLUSION 

This work leads to three general conclusions, which are 
significant for different reasons. The first reason is 
methodological: reporting only peak accuracy within a trial 
may obscure important changes within a trial. This could 
encourage more thorough reporting in the future, and foster 
more in-depth analysis of BCI performance. Second, poor 
performers’ error rates take longer to decline after cue onset, 
perhaps in part because they require more “charging time” to 
develop the thalamocortical oscillations needed for accurate 
SSVEP BCI use. This could encourage future research in to 
why some people perform poorly with SSVEP BCIs. Third, 
poor performers’ error rates often continue to decline at the 
end of the trial. Hence, longer trials could help such users. 
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