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Abstract— Recognition of driver’s intention from elec-
troencephalogram (EEG) can be helpful in developing
an in-car brain computer interface (BCI) systems for
intelligent cars. This could be beneficial in enhancing the
quality of interaction between the driver and the car to
provide the response of the intelligent cars in line with
driver’s intention. We proposed investigating anticipation
as the cognitive state leading to specific actions during car
driving. An experimental protocol is designed for recording
EEG from 6 subjects while driving the virtual reality
driving simulator. The experimental protocol is a variant
of the contingent negative variation (CNV) paradigm with
Go and No-go conditions in driving framework. The results
presented in this study support the presence of the slow
cortical anticipatory potentials in EEG grand averages
and also confirm the discriminability of these potentials
in offline single trial classification with the average of
0.76± 0.12 in area under the curve (AUC).

I. INTRODUCTION

Assessing correlates of cognitive states and detect-
ing the subject’s intention can help in enhancing the
quality of BCI systems [1]. This could be beneficial
for developing an in-car BCI system that monitor the
driver’s brain state during driving intelligent cars. The
main idea of BCIs for intelligent cars is based on the
concept of shared control (SC) [2], in which the control
over the system is shared between the driver and the car.
Deploying such a system can improve the interaction
through aligning the response of the intelligent car with
the intention of the driver. For instance, considering a
junction with a traffic light in red color where an unat-
tentive driver has no intention to brake, the intelligent car
assistance could safely stop the car without surprising
him with an emergency brake at the last second.

Previous studies of monitoring driver’s brain state
have mainly focused on the level of driver’s drowsi-
ness/arousal using electroencephalogram (EEG) and
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electrooculogram (EOG) [3], [4]. EEG-based systems
also investigated the detection the mental workload
of drivers [4]. Recently Haufe et al. investigated the
detection of the emergency braking before the action
onset. The results of this study indicate that the driver’s
intention to perform emergency braking can be detected
130ms earlier than the car pedal responses using EEG
and electromyography (EMG) [5].

We are interested in anticipation related signals dur-
ing driving. Anticipation is a cognitive process during
which a person actively engages in a preparatory phase
required for the stimulus perception and execution of the
specific actions after the appearance of specific stimulus
[6]; i.e. the appearance of a red light signal when a
traffic signal turns from green to yellow. In simple
psychophysical paradigms, a central negativity has been
observed in the scalp EEG during the interval between
the predictive and contingent stimuli. This signal, which
typically lasts from about 300 ms to several seconds
with magnitudes up to 50µV has been termed contingent
negative variation (CNV) potential [6].This potential has
been linked to the preparatory processing required for
appropriate actions at the arrival of future events [7], [8].
Nevertheless, apart from few examples [9], [10], [12],
these potentials have been studied using simple procols
and stimlui.

In this work, we recorded EEG, EOG and EMG
signals from 6 subjects using a variation of the classi-
cal CNV paradigm in a simulated driving experiment.
We report anticipatory brain signals and evaluate the
discriminability of these potentials using single trial
classification methods. In the following section, we
present the experimental set-up and data acquisition.
In Section III, we present the results of offline single
trial recognition of anticipation. Finally, in Section IV,
we discuss the current results and suggest some future
directions.

II. METHODS
A. Experimental protocol and set-up

Six healthy right-handed Subjects (24-32 years, 1
female) participated in this study, all had normal or
corrected to normal vision. Subjects sat comfortably in
the driver’s chair of a car simulator in front of a projector

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

3829978-1-4577-1787-1/12/$26.00 ©2012 IEEE



Fig. 1: Experimental setup. The subject is seated in the car
simulator with the EEG, EOG, and EMG electrodes. Inset:
Illustration of the visual stimuli corresponding to the virtual
roadway environment

screen, which shows a virtual roadway environment. The
task is to drive a virtual car along a highway (including
soft turns) using the steering wheel and gas/brake pedals
(See Figure 1). At specific moments during driving, cued
by visual stimulus,drivers will be asked to brake or to
resume their journey.

In order to involve subjects in anticipating for upcom-
ing future events (such as the color changes of traffic
light in real driving), we have designed a protocol where
one or more contingent warning stimuli predict the
imperative stimulus (Figure 2). A count down appears
at the centre of the screen from ‘4’ to ‘1’ followed by a
‘Go’ cue. Subjects are instructed to push the gas pedal
immediately and briskly after the appearance of the ‘Go’
cue. They have to continue driving at a speed of 100
km/h. Fifteen seconds (±2.87) after, a new series of
count down stimuli appear followed by a ‘Stop’ cue.
Immediately after this cue, subjects are supposed to push
the brake pedal briskly. A new count down followed
by ‘Go’ cue will appear again after 15(±2.87) seconds
and so on. In this experiment, the interval between the
onset of each cue (e.g. ‘1’) to the next one (e.g. ‘Go’)
is one second. Note that the count down stimuli allows
the subjects to anticipate the moment where they should
brake, as opposed to the emergency braking tested by
Haufe and colleagues [5].

As can be seen in Figure 2, There are two types
of trials in our experiment: Drive and Brake trials.
The former comprises the time interval between the
appearance of the numbers and the ‘Go’ cue, while the
latter comprises the time interval between the numbers
and the ‘Stop’. In both cases, each trial contains three
No-go epochs and one Go epoch, in the terms of the
classical Go and No-go definition. The No-go epoch is

Fig. 2: Timeline of protocol, start with waiting 10 seconds for
the first round of count down numbers followed by ‘Go’ cue
to start, continue driving for around 10 second and the second
round of count down followed by ‘Stop’ cue, waiting for 10
second after stopping the car and so on. Two types of trials:
Brake and Drive and each trial contains one Go epoch and
three No-go epochs.

the time interval between the appearance of one number
to the next one, in when the subjects are not supposed to
do any action. The time interval between ‘1’ cue and the
‘Go/Stop’ cue, which subjects are supposed to perform
an action, corresponds to a Go epoch. Each session of
the experiment consists of four runs. Each run is around
15 minutes and contains an average of 84± 15.29 trials
(for each type of Drive and Brake trials)

B. Data acquisition and preprocessing

EEG, EOG, and EMG signals were acquired with
a portable system (Bio-semi Active Two). 64 EEG
Ag-AgCl electrodes placed according to international
extended 10-20 standard. Three flat active electrodes
were used to record EOG, placed above the nasion and
below the outer canthi of the eyes. The EMG signal was
recorded using one set of bipolar electrodes placed on
the subject’s right leg (on the tibialis anterior) muscle.
The sampling rate of entire synchronous recording was
2048 Hz. To reduce artifacts, the subjects are instructed
to fixate on a point on the center of screen and to min-
imize facial or head movements during the appearance
of the stimuli.

Event markers such as the triggers of the pedals and
steering, and the position of the car were provided by the
car simulator at a sampling rate of 256 Hz. Physiological
signals (i.e. EEG, EMG, and EOG) were down-sampled
to 256 Hz and synchronized with the data from the car
simulator.

EEG was preprocessed using common average ref-
erence (CAR) [11] and then filtered by using band-
pass Butterworth filter between 0.1 to 1 Hz, due to the
frequency range of CNV potentials [12]. EMG signals
were filtered with a bandpass Butterworth filter in the
range of 20 to 50 Hz and smoothed with a moving
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average filter (time window = 25 samples). EEG ad
EMG signals were segmented into Go, No-go epochs for
both Drive and Brake trials. Moreover, for each epoch
(Go and No-go), the data is baseline corrected using the
sample at the cue onset. The onset of the appearance
of ‘Go/Stop’ cue on the screen is defined as 0s. In this
study, we didn’t focus on EOG signals.

C. Feature extraction and classification

We evaluate the possibility of differentiating between
Go and No-go epochs on a single-trial basis. For that,
we used a classification approach due to the high trial
to trial variability of the CNV brain potentials. Sepa-
rate classifiers were built for Drive and Brake trials.
In each case, we compare two classification methods:
linear and quadratic discriminant analysis (LDA and
QDA, respectively) [13]. Classification performance was
assessed using 4-fold cross-validation, where each fold
corresponds to a separate run.

For each epoch, the Cz potentials at four equally
spaced time points (i.e., at -0.2s, -0.4s, -0.6s, -0.8s) are
used as a feature vector. This number of features have
been reported to sufficiently represent the evolution of
the CNV potentials in a 1s window [12].

The performance of the single trial classification is
evaluated using the area under the curve (AUC) in the
receiver operating characteristics (ROC) space. AUC is
an estimate of the probability that a classifier yield a
higher rank to a randomly chosen target (i.e. Go epochs)
than a randomly chosen non-target (No-go epochs) [14].

III. RESULTS

A. Event-related potentials

EEG grand averages are computed over all the Drive
and Brake trials separately. Figure 3-a shows the EEG-
grand average for Cz electrode for one subject. In both
types of trials, we see a negative deflection starting
about one second before the appearance of ‘Go/Stop’
sign; i.e. around the onset of the ‘1’ on the screen, and
it peaks at 0s which is the time of the appearance of
‘Go/Stop’ on the screen and back to zero after around
250ms later. This is consistent with the CNV potential
reported in previous studies [6], [9], [12]. In addition,
a clear difference can be observed between Go and No-
go epochs (increasing negativity for Go and almost flat
or slightly positive response for all the other No-go
epochs). The topographic plots of average scalp distri-
bution at different time points show that this negativity
is maximal at Cz electrode. The same phenomenon has
been observed for all subjects. Figure 3-b shows the
grand averages of the EMG envelopes. The onset of
increasing activity in EMG grand averages is around

Fig. 3: a) Topographic representation of average EEG scalp
distribution at different time points: 0.5 second before the onset
of each cue which is shown by magenta arrow (top), Grand
averages of for the Cz electrode is shown in blue for Drive
trials and red in Brake trials (bottom). t=0 is the onset of
the appearance of ‘Go/Stop’ cue and t=-4 is the onset of the
appearance of the first count down cue. b) EMG grand averages
to show the action execution (Drive trials:blue and Brake trials:
red). This figure is plotted using the recording of subject-2, the
same phenomena have been observed for all subjects.

-0.2s, confirming that there is no muscular activity on
the leg during the preparation phase.

B. Single trial classification

The results of offline single trial classification using
two different classifiers (LDA and QDA) are summa-
rized in Table I. The classification results show relatively
good sensitivity (with a mean value above 0.66; portion
of GO trial that are classified as GO) and high specificity
(with a mean value above 0.75; portion of NO-go trials
that are rejected to be GO trials), irrespective of the
classification method and type of trials. QDA classifiers
performed slightly better than LDA for both Drive and
Brake trials.

Independently of the classifiers, the classification per-
formance was higher for Brake trials than for Drive
trials. Noticeably, a higher negative peak was observed
for Brake trial in EEG grand averages (see Figure 3).
This difference can be due to the type of movements
required for each type of trial. Indeed, in the Drive trials,
subjects were supposed to push sharply the acceleration
pedal, while for the Brake pedal they need to switch
the pedal including releasing the acceleration pedal and
pushing brake pedal sharply and immediately.

IV. CONCLUSIONS AND FUTURE WORKS

We investigate anticipation-related EEG signals dur-
ing simulated car driving. Experiments with 6 subjects,
show event-related potentials consistent with CNV sig-
nals reported in the literature [7], [8], [12]. Detection
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TABLE I: Performance of classification (AUC-Sensitivity-Specificity)

AUC Sensitivity Specificity
Classifier LDA QDA LDA QDA LDA QDA
Subject Drive Brake Drive Brake Drive Brake Drive Brake Drive Brake Drive Brake

1 0.86 0.91 0.89 0.92 0.75 0.84 0.75 0.84 0.84 0.86 0.87 0.88
2 0.87 0.96 0.87 0.96 0.82 0.96 0.82 0.92 0.83 0.88 0.86 0.72
3 0.71 0.76 0.73 0.78 0.59 0.68 0.44 0.68 0.73 0.74 0.88 0.75
4 0.56 0.65 0.65 0.67 0.48 0.62 0.50 0.55 0.62 0.63 0.74 0.78
5 0.72 0.83 0.69 0.82 0.67 0.71 0.54 0.74 0.72 0.7 0.27 0.23
6 0.50 0.72 0.52 0.73 0.44 0.58 0.53 0.57 0.63 0.74 0.57 0.82

Mean 0.70 0.80 0.72 0.81 0.62 0.73 0.59 0.71 0.72 0.76 0.77 0.78
SD 0.13 0.10 0.12 0.10 0.13 0.13 0.13 0.14 0.08 0.08 0.11 0.05

of this anticipatory brain potential can be useful for
assessing the subject’s intention before the execution
of the planned action. Offline results using QDA and
LDA classifiers show the feasibility of recognizing these
signals in single-trial. This information can be exploited
by in-car BCI systems that monitor the driver’s brain
state.

The results presented in the current work are promis-
ing since previous studies of anticipation-related poten-
tials use simpler experimental setups and stimuli [6],
[7]. In contrast, in our realistic driving experiment,
EEG signals may be affected by visual distractors in
the roadway and limb movements of subjects while
driving. Despite this, we achieved high performance for
discriminability of Go and No-go epochs.

Further analysis will be performed to test the speci-
ficity of our classifiers including the intervals while the
subject was driving or waiting for the cues to start again
(see Figure 2). Furthermore, artifact removal techniques
will be implemented to reduce their effects on the EEG
signal, and evaluate whether they lead to improved
classification performance.

Although these results support the possibility of pre-
dicting the driver’s intention through anticipatory brain
potentials, the real-time applicability of the methods
presented here raise new challenges. Particularly, the
requirement of low frequency band pass filters designed
for improving signal to noise ratio of slow CNV poten-
tials, which may introduce significant delays. A better
compromise on these delays and accuracy recognition
rates will be explored in future.
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