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Abstract— Heart rate variability (HRV) may provide anes-
thesiologists with a noninvasive tool for monitoring nociception
during general anesthesia. A novel real-time cardiorespiratory
coherence (CRC) algorithm has been developed to analyze
the strength of linear coupling between heart rate (HR) and
respiration. CRC values range from 0 (low coherence, strong
nociception) to 1 (high coherence, no nociception). The algo-
rithm uses specially designed filters to operate in real-time,
minimizing computational complexity and time delay. In the
standard HRV high frequency band of 0.15 – 0.4 Hz, the
real-time delay is only 5.25 – 3.25 s. We have assessed the
algorithm’s response to 60 anesthetic bolus events (a large dose
of anesthetics given over a short time; strongly antinociceptive)
recorded in 47 pediatric patients receiving general anesthesia.
Real-time CRC responded strongly to bolus events, changing by
an average of 30%. For comparison, three traditional measures
of HRV (LF/HF ratio, SDNN, and RMSSD) responded on
average by only 3.8%, 14%, and 3.9%, respectively. Finally,
two traditional clinical measures of nociception (HR and blood
pressure) responded on average by only 3.9% and 0.91%,
respectively. CRC may thus be used as a real-time nociception
monitor during general anesthesia.

I. INTRODUCTION

Anesthesiology is commonly regarded as the practice

of autonomic medicine. Noxious stimuli during surgery

cause the autonomic nervous system (ANS) to invoke a

stress response, increasing sympathetic tone and decreasing

parasympathetic tone [1]. An excessive and prolonged sym-

pathetic response increases the risk of suffering from peri-

operative complications, delays recovery, and is a key factor

in postoperative morbidity [2]. Anesthesiologists control

the stress response (nociception) by administering analgesic

drugs (antinociception).

There is currently no clinically proven and routinely used

monitor of the ANS. Anesthesiologists are guided by obser-

vation and interpretation of trends in patients’ vital signs,

most importantly heart rate (HR) and blood pressure. These

are only indirect measures of nociception. Confounding fac-

tors such as pre-existing medical conditions and inter-patient

variability cause difficulties in such indirect estimations of

the ANS. An automated nociception monitor that directly

assesses ANS activity would be very useful for general
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anesthesia, providing anesthesiologists with feedback about

the adequacy of analgesia in real-time. Heart rate variability

(HRV) shows promise as a nociception monitor [3], [4].

We have previously developed a nociception monitoring

algorithm called wavelet transform cardiorespiratory coher-

ence (WTCRC). The algorithm measures ANS activity by

analyzing respiratory sinus arrhythmia (RSA) [5]. WTCRC

can detect nociception during general anesthesia [6], [7].

Unfortunately WTCRC is unsuitable for real-time analysis.

The algorithm is based on the continuous wavelet transform

(CWT), which simultaneously analyzes signals across a wide

range of times/frequencies. This makes it an ideal tool for

visualizing coherence in the joint time/frequency plane, and

exploring the relationship between HR and respiration. The

CWT is very computationally inefficient, however, perform-

ing many redundant calculations that are not required to pro-

duce an index of nociception. Furthermore, WTCRC exhibits

significant real-time delay, which limits its usefulness in the

clinical application of nociception monitoring.

In this work, we will describe a modified cardiorespiratory

coherence (CRC) algorithm that is better suited to real-

time analysis. This real-time CRC algorithm eliminates the

computational redundancy of its forebear, and uses specially

designed filters to minimize real-time delay. We will demon-

strate that this new algorithm responds strongly to analgesic

drugs (antinociception) during general anesthesia, and that it

outperforms traditional measures of nociception.

II. METHODS

A. Real-Time Cardiorespiratory Coherence

The real-time CRC algorithm is a custom adaptation of our

existing WTCRC algorithm [5], [6], [7], which is itself based

on prior theoretical work on coherence analysis [8], [9]. CRC

begins by analyzing the HR and respiration waves using a

customized complex Morlet basis function (filter). This filter

is a complex exponential modulated by a Gaussian:

Ψ(t) = π−

1

4 e2πifcte−t2fb , (1)

where fc is the filter’s center frequency and fb is the

bandwidth. The bandwidth term is defined as:

fb = 2fc/fs, (2)

where fs is the sampling frequency. As fb decreases, so does

the filter’s frequency bandwidth. Note that this relationship

is opposite to that in the standard complex Morlet definition.

This custom analyzing filter tracks the RSA as it moves

across the time/frequency plane. We use the respiratory
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frequency (fr) as the filter’s center frequency (fc = fr). This

is where the RSA power exists in the frequency domain. As

fr varies over time, fc changes to track the RSA.

The filter length depends on the respiratory frequency. As

fr decreases, fc and fb decrease accordingly. The Gaussian

modulator in (1) becomes narrower in frequency and wider in

time (by the Heisenberg-Gabor uncertainty principle). This

tradeoff is modeled after the principles of wavelet analysis.

Real-time delay depends on the filter length. Longer filters

produce longer delay. The delay is caused by the right half of

the filter, which operates on future (non-causal) signal values.

We can mitigate the delay by truncating the filter in time,

trading error for improved time localization. We truncate the

filter where the Gaussian modulator edge falls below e−2,

which is similar to the cutoff criterion in [8] and [9]. This

produces a variable real-time delay, given by:

tdelay =
√

fs/fc. (3)

The filter is applied to the tachogram (HR time series) and

respiration signals to calculate their individual powers and

cross powers. Tachogram, respiration, and cross powers are

denoted as PTT
t (fc), P

RR
t (fc), and PTR

t (fc) respectively.

The powers are then smoothed in time with the left half of

a Gaussian window (e−t2/2σ2

, t ≤ 0). By using only the

left half, we make the smoothing operation causal, and do

not introduce any additional real-time delay. The σ parameter

defines the level of smoothing. We use σ = 5 to approximate

the smoothing of the existing WTCRC algorithm [6]. In

future work, σ could be adjusted to tune the results.

Finally, the algorithm calculates the coherence estimator:

Ĉ2

t (fc) =

∣

∣

〈
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〉
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∣PTT
t (fc)

∣
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〉 〈∣

∣PRR
t (fc)

∣

∣

〉 , (4)

where the angled brackets denote the smoothing operator.

The result is a series of real-time coherence values at

the time-varying respiratory frequency. Coherence can range

from 0 (no coherence, strong nociception) to 1 (perfect

coherence, no nociception or strong antinociception).

B. Clinical Protocol & Data Collection

Following ethics approval and informed consent, data were

collected from 47 healthy pediatric patients receiving general

anesthesia during dental surgery. Subjects were aged 3-6

years, had ASA physical status I or II, were free of car-

diorespiratory disease, and were not taking medications that

alter autonomic function. Subjects were anesthetized with

propofol and remifentanil. Surgeries provided multiple peri-

ods of nociceptive stimuli, including dental dam insertions,

tooth extractions, cavity drillings, etc. The anesthesiologist

could deliver bolus doses of anesthetics at her discretion, if

she decided the patient was responding too strongly to the

surgical stimulation. A bolus is a large dose of anesthetics

given over a short time, and is strongly antinociceptive.

Physiological data were recorded throughout each case.

The electrocardiogram (ECG) and capnometry (CO2) waves,

as well as the respiratory frequency (fr) (from capnometry)

and mean noninvasive blood pressure (NIBPmean) trends,

were recorded using Datex/Ohmeda S/5 Collect software

(GE Healthcare, Helsinki, Finland). The ECG was recorded

at 300 Hz, CO2 at 25 Hz, fr at 1/10 Hz, and NIBPmean at

1/180 Hz. A research assistant annotated the data in real-time

with markers identifying anesthetic bolus events.

C. Data Analysis

Data were manually inspected and selected for post hoc

analysis in Matlab (The Mathworks, Natick, MA). Case

annotations were searched to find all recorded anesthetic

bolus events. Bolus events were only retained for analysis if

they occurred during the stable phase of anesthesia, when the

patient was mechanically ventilated, and when the respiration

and ECG waves were free of significant artifacts. In total, 60

anesthetic bolus events were retained for analysis.

Heart rate and respiration signals were prepared for co-

herence analysis. Data segments were extracted around each

bolus event. The 60 s immediately preceding the bolus event

was labeled the nociceptive period. The bolus was given 30

s to take effect, after which the following 60 s was labeled

the antinociceptive period. In each segment, a 120 s buffer

was provided before the start of the nociceptive period and

after the end of the antinociceptive period, to ensure the

analysis was not corrupted by edge artifacts. Fig. 1 shows

an example analysis segment. ECG R-peaks were detected

using a filter bank algorithm [10], and errors were manually

corrected to create a gold standard beat series. Each beat

series was converted into a tachogram, and then resampled

onto an evenly-spaced 4 Hz grid using Berger’s algorithm

[11]. The respiration CO2 wave was downsampled to 4 Hz

using standard low pass filtering and decimation. The fr
trend was upsampled to 4 Hz using a repeater.

The percent change in CRC was calculated in all bolus

events in pseudo real-time. The tachogram, respiration, and

fr were analyzed sample-by-sample to simulate a real-time

environment in each data segment. The resulting CRC was

averaged over the nociceptive and antinociceptive periods.

The percent change in average CRC from the nociceptive

to the antinociceptive period was calculated. Finally, percent

changes were averaged over all 60 anesthetic bolus events.

Alternative measures of nociception were also calculated

for comparison. The change in WTCRC (the non-real-time

coherence algorithm) was calculated to provide a reference

measure of coherence. The change in low frequency to high

frequency HR power (LF/HF ratio), standard deviation of

normal HRs (SDNN), and root mean square of successive

differences in HRs (RMSSD) were calculated as traditional

HRV measures. Finally, the change in average HR (HRmean)

and NIBPmean were calculated as traditional clinical noci-

ception measures. Since NIBPmean was only sampled every

180 s, we used the last sample in or before the nociceptive

period, and the first sample in or after the antinociceptive

period. In analyzing the LF/HF results, 18 of the 60 bolus

events were excluded because the respiratory frequency was

in the LF band (< 0.15 Hz). We have previously shown that

the LF/HF ratio cannot function under these conditions [5].
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Fig. 1. Example real-time CRC analysis. Top plot: HR; middle plot: respiration (CO2); bottom plot: real-time CRC. Vertical blue lines denote clinical
events. Red and green highlighting denotes the nociceptive and antinociceptive periods, respectively. Notice that the CRC is missing near the end of the
time series. This is caused by the real-time delay. In this example, the respiratory frequency is 0.2 Hz, which produces a real-time delay of 4.5 s. The
missing CRC at the start of the time series is caused by the combined length of the analyzing and smoothing filters. This only affects the very beginning
of any analysis. Finally, notice the effect of a recording artifact in the respiratory wave at approximately 320 – 335 s.
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Fig. 2. Change in real-time CRC for each anesthetic bolus event. Line length denotes the magnitude of the change. Arrowheads and color denote the
direction of the change. Blue indicates an increase in CRC (expected direction), red indicates a decrease (wrong direction).
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III. RESULTS

Fig. 1 illustrates an example real-time CRC analysis of

a single anesthetic bolus event. Fig. 2 presents the real-

time CRC results across all anesthetic bolus events. Fig. 3

illustrates the average response of each nociception measure.

Real-time CRC responded to an anesthetic bolus by 30%

on average, and WTCRC responded by 32%. Traditional

measures of HRV — LF/HF ratio, SDNN, and RMSSD

— responded by 3.8%, 14%, and 3.9% respectively. The

traditional clinical measures of nociception — HRmean and

NIBPmean — responded by 3.9% and 0.91% respectively.

Real-time CRC achieved a real-time delay ranging from

5.25 – 3.25 s in the HRV HF band (0.15 – 0.4 Hz).

IV. DISCUSSION & CONCLUSION

We have developed a novel real-time cardiorespiratory

coherence algorithm for monitoring nociception during gen-

eral anesthesia. The algorithm measures ANS activity by

analyzing the strength of linear coupling between HR and

respiration. This is one measure of RSA. We have adapted

our previous work on WTCRC to create the real-time CRC

algorithm.

Real-time CRC uses specially designed filters to minimize

the real-time delay. The algorithm tracks the RSA as it moves

in the time/frequency plane by changing the center frequency

and bandwidth of the analyzing filter. As the respiratory

frequency decreases, the bandwidth decreases and the filter

grows longer in time. The real-time delay thus increases as

the respiratory frequency decreases. The customized causal

Gaussian smoothing filter does not contribute any additional

delay. The CRC algorithm was designed to produce very

small delay across a wide range of respiratory frequencies.

In the standard HRV HF band (0.15 – 0.4 Hz), the CRC

filters produce a real-time delay of only 5.25 – 3.25 s. This

allows the algorithm to respond very quickly in its intended

clinical application of real-time nociception monitoring.

Real-time CRC compared very favorably to other mea-

sures of nociception in our analysis (Fig. 3). WTCRC

responded slightly more strongly (32% compared to 30%),

but we believe this is a reasonable tradeoff considering it

does not operate in real-time. The traditional measures of

HRV exhibited much weaker responses, as did the traditional

clinical measures of nociception.

Our experiment underestimates the true performance of all

algorithms. It assumes that each bolus dose of anesthetics

was delivered in response to strong nociception. In some

cases, however, the anesthetics appear instead to have been

delivered in anticipation of nociception. In these events,

the ANS state changes in the wrong direction, reducing the

overall response average. Under real clinical conditions, all

algorithms should perform better than reported here.

We have shown that real-time CRC responds strongly to

antinociception in pediatric patients receiving general anes-

thesia. Specially designed analyzing and smoothing filters

allow CRC to be measured with only a small real-time delay.

These advances open up the possibility of using CRC for

real-time nociception monitoring during general anesthesia.
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Fig. 3. Average response to antinociception, by algorithm.
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