
Adaptive Affective Response Identification for Hearing Threshold

Detection

Thomas E. Doyle1, David Musson2

Abstract— Emotional arousal, or affective patterns, can be
probed using observable bioelectric signals, in particular using
the fluctuations of electroencephalographic potentials from
the human scalp. Hearing impairment related to increased
threshold of audio tone detection may cause the loss of intel-
ligibility of speech resulting in an innate automatic emotional
response. An adaptive support vector machine can be trained
to identify a subject’s unique affective response based upon an
audiogram hearing test. This paper presents the efficacy of our
model, initial SVM classification data, and discusses potential
application.

I. INTRODUCTION

The human body has numerous communication channels,

transmitters and receivers, inter- and intra-communicating.

The verbal inter-communication channel consists of speech,

sound, and hearing and as with any communication system, it

can be divided into a transmitter, a transmission medium, and

a receiver. The physical and physiological process of human

communication is well understood, but the mechanisms that

control the speech articulators and hearing comprehension

remain areas of active research.

II. THE COMMUNICATION CHANNEL

A. Speech Production

Speech is composed of a collection of sequential complex

sounds. The syntax and protocol of these sounds are gov-

erned by the rules of grammar that form symbols to convey

information based on a cognitive lexicon. The formulation of

these sounds is beyond the scope of this research; however,

it has been proposed that we are born with the ability to

rapidly acquire a meaning for innate concepts and that we use

those meanings to develop a lexicon to communicate, using

a universal grammar [1]. Rabiner states that the production

of these sounds may be modeled with a time-varying linear

system [2] that according to Parsons can be divided into two

functions; excitation and modulation [3].

Production of speech requires energy. Speech energy is

supplied from the expiratory phase of the breathing mecha-

nism. Air flowing out of the lungs generates a steady flow

of energy in one direction causing, initially, the vocal cords

to oscillate, and then the air particles surrounding them. Fry

best describes this as the vibration of a musician’s lips on a

brass wind instrument [4].
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The description of speech production becomes more com-

plex because it can be described on three different levels:

1) Linguistic: study of the structure and nature of human

speech (i.e. morphology, syntax, dialectology, phonol-

ogy, etc.).

2) Acoustic: differences in the acoustic levels are due

to dialect, physiological characteristics, and speaker

mannerisms. These differences may be so great that

it is not practical, or possible, to record the actual

sounds. So instead, speech is characterized in terms

of articulatory gestures. Alternatively, a spectrogram

is used.

3) Articulatory: removes the physical characteristics,

which cause the differences in acoustic levels, and

allows the representation of speech to be done using

a formal set of symbols (IPA - International Phonetic

Alphabet).

A further confusion is the terminology relating these

levels. At the linguistics level, a speech unit is called a

phoneme, which is translated by an articulatory gesture into

a phone at the acoustic level. The phoneme is the intended

unit of language and the phone is the sound produced.

The propagation of speech sound waves is analogous to the

sound produced when a tuning fork is struck. The vibration

of the tuning fork produces a displacement of the immediate

air particles forcing them into vibration. However the tuning

fork will emit a single pure tone, or single frequency,

while the human voice is composed of an infinitely possible

combination of “tuning forks” producing complex tones, or

mixture of frequencies.

There are two types of vibratory wave motion a particle

can assume: transverse and longitudinal.

The transmission of sound through air is often compared

to the ripple effect a pebble would produce on a still pond. If

we consider the pebble’s effect along a radial line, we see that

the individual particle moves up and down, perpendicular to

the outward motion of the wave; this is a transverse wave.

This type of vibratory motion appears at first to resemble that

of a tuning fork. However, this type of vibration can only

occur on on a liquid’s surface or within a solid and not in a

gas, thus it cannot create sound waves (audible vibration) in

air.

The vibration of the tuning fork causes compression and

rarefaction of the contiguous air particles, causing them to

oscillate along the line of travel; this is a longitudinal wave.

The compression and rarefaction motion of a single par-

ticle in a longitudinal wave causing the rise and fall of air
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pressure will produce a sinusoidal waveform traveling omni-

directionally from the source; expanding radially.

Any sound that reaches the ear drum is the result of com-

pression and rarefaction of the air particles of a longitudinal

waveform.

B. Reception and Perception

The information contained in human speech comes from

more than the words that are used to convey our thoughts.

Our auditory system must process speech by translating

sound pressure waves into a sequence of electrical im-

pulses that are passed through the nervous system into the

brain. Different sounds in our language produce different

frequencies of vibration in the ear and these vibrations

contain information. The processing of this information is

so automatic that we can not consciously be aware of the

different vibrations and the information they contain.

The human ear consists of three main parts:

1) Outer ear: the visible part, the auditory canal and the

eardrum,

2) Middle ear: the hammer, the anvil, and the stirrup

bones, and

3) Inner ear: the cochlea, and auditory nerves.

Sound enters the auditory canal and applies pressure to

the eardrum. The hammer, anvil and stirrup bones convey

eardrum vibrations to the cochlea in the inner ear. These

vibrations cause pressure waves to travel down the cochlea

making the cochlea’s tiny hair cells bend creating action

potentials. The hair cells are attached to the auditory nerves

and this information is transmitted to the brain.

III. HEARING IMPAIRMENT

Simply stated, hearing impairment can be described as a

spectrum analyzer with a damaged channel [5]. Admittedly,

this definition does not provide a sense of the many types and

forms of hearing impairment, but it does provide insight to

the resultant problem. The most common form of hearing

loss is the mixed type of conductive and sensorineural

damage. The degree of hearing impairment varies according

to the division of the mix and by the method which the

damage occurred.

Our focus is that of presbycusis-type impairment. Pres-

bycusis is defined as the progressive increase of upper

frequency threshold of hearing causing the threshold floor to

rise causing reduced speech intelligibility due to the corrup-

tion of high frequency speech components. Similarly, if we

consider the rise of the threshold floor at any frequency then

we will experience similar speech intelligibility problems.

IV. AFFECT OF HEARING IMPAIRMENT

The type, method, severity, and age of onset of hearing

loss has both psychological and social implications. The

limited empirical literature finds hearing loss is associated

with elevated rates of depression and anxiety [6]. Clinical

study and experience suggest that because loss of hearing

effects the unconscious and primitive level of hearing [7] and

appeared to cause increased stress [8]; especially in adults

with acquired hearing loss, in comparison to pre-lingually

deaf. Also, the author’s observations indicate a strong cor-

relation between a hearing impaired individual’s increased

emotional stress and an instance of miscommunication; often

this increased stress goes unnoticed by the impaired.

V. AFFECTIVE ELECTROENCEPHALOGRAPHY

Using scalp electrodes, past attempts to isolate brain

current for singular cognitive functions has proven difficult,

if not impossible. This is due to the diffuse nature of the

brain’s electrical signals through the organic medium of the

scalp. The literature presents a generalized frequency range

approach to classifying electrophysiological patterns, perhaps

taking it’s cue from the classification of the rhythms that have

been well defined [9]–[12]: α, β, γ, δ, and θ.

Fig. 1. Sensory associated regions of the human brain

Fig. 2. An alternate electrode placement by Doyle et al.

Our electrode locations conform to the 10-20 system of

positioning and we have expanded the horizontal range of

the montage to reduce the influence by the occipital region

(visual subsystem) and to increase the influence of the

somatosensory (sensation) region of the brain. Regions of

the brain are shown in figure 1. The standardized names for

the chosen locations are: Inion, Pz, P7, and P8. Our reference

is taken from the subject’s left ear lobe.

VI. METHODOLOGY

There are well defined frequency bands that have been

associated with cognitive and emotional attributes. Careful

selection of features related to these attributes permits us
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to develop an adaptive model based upon the user’s unique

response.

Regardless of the attributes selected, the visualization and

classification of such data becomes an increasing challenge

proportional to dimensionality. Fundamental to the classi-

fication problem is the unknown distribution of the data,

further complicated with the fact that real-world experimental

data of this nature are often not linearly separable without

significant misclassification error.

A. Electrophysiological Response to Auditory Tones: Thresh-

old

When a hearing test is performed, an audiologist will

measure the subject’s hearing threshold. The threshold is

determined by the subject’s acknowledgement (or lack of) to

series of short tones. These tones span the frequency range of

human hearing and vary in amplitude. If a subject is deficient

in any portion of their threshold response then they generally

require a hearing assistive device.

An individual experiencing difficulty in communication

due to a loss of audiological intelligibility exhibits an un-

conscious emotional response; an affective state.

The electroencephalogram is a measure of brain current. A

synchrony of oscillating brain currents have been correlated

with brain activity. Several of those correlated oscillations

have well defined frequencies in brain research.

B. Support Vector Machine Classification

Often experimental data are inseparable using a linear

classifier. This may be overcome by permitting some data

to be misclassified, or by the use of a nonlinear classifier.

A support vector machine (SVM) may be used to create

nonlinear classification boundaries (hypersurfaces) by using

a mapping (Φ) from input (attribute) space (x) to feature

space(z). The hypersurfaces are then created in feature space

to partition our measured indicators. Measuring EEG data

related to a user’s unique response to threshold tone stimuli

provides the training data for the support vector machine.

Training time is minimal due to the innate response related

to loss of intelligibility.

Figure 3 illustrates the process of performing the threshold

experiments and how a single experimental data set was used

to create training and testing data.

The implementation of the SVM requires the selection

of several parameters: kernel function, associated kernel pa-

rameters, and a permissible margin of error. Each parameter

was selected empirically. Our model used a Gaussian kernel

because it is well suited to noisy experimental data [13]–[15]

and also because of the nature of a Gaussian function relaxes

the boundary restrictions of the SVM design.

The training data is extracted from the 8 kHz hearing

threshold experiment in the first trail. This is illustrated in

figure 3. The selected window of observation is two seconds,

or 200 sampling points. To “teach” the SVM we require

both input and output training data. However, we do not

know the distribution of the output, but given the subject’s

acknowledgement we know that a response has just occurred.

The subject is presented with several hearing threshold trials,

of which we have labeled two such trails in figure 3. From the

first trail the training input is extracted and for our training

output we have partitioned it into fifteen possible segments.

Training output partitions numbered 1 - 7 were used to

investigate a response duration of 500 ms, and partitions 8-

15 were investigated a refined response duration of 250 ms.

The SVM is trained using all fifteen possible outputs. The

training formulated the decision boundary (hypersurface)

using a small number of training data points; support vectors.

With the assertion that a response has occurred and that its

occurrence is measurable, we evaluate a testing set of data.

As illustrated in figure ?? the testing set of data was

the entire second trial which was independent of the first

trial. Each subject acknowledgement in the testing data was

extended back in time (P) to accommodate subject reaction

latency. If our training data created a good general classifier

(binary classifier or dichotomization) then we may expect

that the testing data would have had very high percentage of

correct classification.

Using the five electrode locations (Inion, Pz, P7, P8, lobe

as reference) for raw EEG measurement, our parametric

search examined all combinations of outputs data (1-15),

subject reaction latency (P: 250 and 500 ms), upper limit

on classification error (C: 1, 5, and 10), and the Gaussian

kernel radial bias function (σ: 0.25, 0.50, and 1.00).

Fig. 3. Experimental trials and their relation to training and testing data

C. Subject Preparation

The montage required a total of five surface electrodes

to be placed on the subject as presented in figure 2. The

placement of the electrodes were done in accordance with the

skin preparation and equipment decontamination procedures

of the College of Physicians and Surgeons of Ontario [16]

and the 10-20 system of electrode placement [11].

D. Experimental Setup

The number of subjects was three (n = 3), denoted as

subject A, B, and C. The subjects were healthy males,

without hearing impairment, between the ages of 25 to 35

years old.

The experiment required the subject to sit comfortably

in a reclined position with eyes closed. All instruction

and stimuli were presented though the headphones. Audio

instruction explained the format of the experiment, method

of acknowledgement, and duration of the experiment. The

acknowledgement was button to begin, followed by ten
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seconds of silence. The subject is presented with 3 sets audio

tones. Each audio tone set presented the series of 100 Hz,

250 Hz, 500 Hz, 1 kHz, 2 kHz, 3 kHz, 4 kHz, 5 kHz, 8 kHz,

10 kHz, 12.5 kHz, and 15 kHz. The order of presentation,

tone duration and pauses were varied. Each tone is presented

in discrete, but increasing steps of amplification. When a

tone was detected, the subject was to acknowledge it via the

acknowledgement button.

VII. RESULTS

Correct SVM classification using raw EEG data from the

five identified electrodes ranged from an average of 76.3%

to 94.0%; however, false positive results were significant

with the higher average classification. Duration of data

partition (P: 250 and 500 ms) presented no improvement to

classification. Increased computationally efficiency of classi-

fication ( correct classification
no. of support vectors

) occurred when upper limit on

classification error (C: 1, 5, and 10) and the Gaussian kernel

radial bias function (σ: 0.25, 0.50, and 1.00) were C = 5 and

σ = 0.50, respectively.

VIII. DISCUSSION

This study investigated the use of SVM machine learning

in detection of hearing threshold using a subject’s unique

electroencephalographic emotional arousal, or affective re-

sponse. Based upon sample size we do not have statistical

significance; however, the range of successful classifications

are encouraging for further investigation.

Electroencephalography for the measurement of affective

patterns has inherent sources of error that shall be addressed

in further work. Three identified areas for improvement: 1)

reducing the noise EEG measurement, 2) remove muscular

contraction artifacts, and 3) differentiate anticipation vs.

actual response.

Recent research of electrocorticography (ECoG), a method

of measuring electrical response where an electrode array is

placed directly upon the subjects brain [17], [18], may pro-

vide significantly higher accuracy and selectivity. Example

applications of ECoG are (a) implanted telemetry and control

sensors for a prosthetic hand [19], (b) flexible electrode array

overlaid directly on the human brain [20], and (c) Brain

Computer Interface [21]. While ECoG is invasive, it much

less invasive than using electrode arrays that are inserted into

the brain to identify single unit neuron responses.

IX. CONCLUSION

The results from our model analysis are encouraging.

By empirically determining a good set of parameters, our

support vector machine generated a very high percentage of

correct classification; however, false positives need addressed

as noted. In reference to our model assumptions, we have

validated that emotional responses (affective patterns) can

be measured using bioelectric signals and that the loss of

an innate attribute is sufficient to produce a reliable and

measurable response without explicit operant conditioning.

While this detection method is well suited to determine a

hearing threshold for the improved fitting of custom hearing

prostheses, it is expected that this methodology will find best

application embedded in the digital hearing aid for specific

acoustic environment response and adaptation.

This dual feedback mechanism (subject and embedded

computation adapting to each other) with the subject-in-the-

loop offers an exciting application for machine learning and

human rehabilitation.
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