
Towards More Precise, Minimally-Invasive Tumour
Treatment Under Free Breathing

Frank Preiswerk, Patrik Arnold, Beat Fasel and Philippe C. Cattin1

Abstract— In recent years, significant advances have been
made towards compensating respiratory organ motion for the
treatment of tumours, e.g. for the liver. Among the most
promising approaches are statistical population models of organ
motion.

In this paper we give an overview on our work in the field. We
explain how 4D motion data can be acquired, how these motion
models can then be built and applied in realistic scenarios. The
application of the motion models is first shown on a case where
3D surrogate marker data is available. Then we will evaluate the
prediction accuracy if only 2D and lastly 1D surrogate marker
motion data is available. For all three scenarios we will give
quantitative prediction accuracy results.

I. INTRODUCTION
Respiratory organ motion is a complicating factor in the

treatment of liver tumours. Non-rigid deformation during
breathing introduces a significant amount of uncertainty
in location during irradiation of a tumour. It has been
shown that 4D treatment planning is important for improved
precision in radiotherapy [10]. A lot of research has been
done for handling respiratory motion of organs. Some of the
approaches rely on a correlation between external markers
and internal organ motion [5], which is not always valid
either due to organ drift [12], [6] or because of varying
motion patterns at different positions of the organ. The
approach by Ehrhardt et al. [4] is mathematically well formu-
lated but requires quite a few assumptions about breathing-
depth and voxel intensities and falls short in the temporal
resolution of the model. Our approach to this problem is
based on the acquisition of Magnetic Resonance Imaging
(MRI) sequences of volunteers and a number of algorithms
for processing this data. First, we retrospectively reconstruct
4D images in order to generate a 4D-MRI sequence for
each subject. Then we register the data to obtain deformation
fields for each sequence and establish mechanical correspon-
dence among all subjects. We finally capture the motion
information by learning a PCA model of the deviation from
exhalation position during quiet breathing. Finally, we apply
a prediction algorithm to sparse data in order to obtain a
reconstruction of the motion for the whole organ at any point
in time. Our model can equally well handle 1D, 2D or 3D
input information. Even if only a single 1D signal (i.e. the
Superior/Inferior (SI) motion component of a single point on
the diaphragm) is available, our model provides an accurate
reconstruction of the position of the complete organ.

In this paper we shortly wrap up the basics of our
modeling pipeline. We provide quantitative results of two
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of our most recent studies and additionally give the latest
results on using our model in a gated setting with only a 1D
surrogate.

II. STATISTICAL MOTION MODEL
Building a statistical motion model comprises of a number

of steps. First, the image data is obtained using an MRI
scanner and the data is registered to obtain deformation fields
over time. Then, correspondence is established among all
subjects. Finally, the deformation fields are processed using
Principal Component Analysis (PCA) to compute the model.

A. Data Acquisition

We used 4D-MRI sequences [11] of the liver from 20
healthy subjects. The in-plane resolution is in the range of
1.5 mm and the slice thickness is 3− 4 mm, depending on
the subject. The data was acquired over roughly one hour
on 22 to 30 sagittal slices and a temporal resolution of
2.6− 2.8 Hz. 4D-MRI sequences are generated by retrospec-
tively stacking the acquired 2D image slices based on the
navigator technique as described in [11], and depicted in
Fig. 1.
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Fig. 1. The 4D-MRI acquisition scheme. Each slice position (1, 2, . . .)
is temporally encapsulated by two navigators (N). The navigator slice
is always acquired at the same spatial position and defines a phase for
each encapsulated image. This allows to find matching slices of the same
breathing phase for each position and thus gives a 3D stack for every point
in time.

The 3D deformation fields are then extracted using the
B-spline based non-rigid registration method proposed by
Rueckert et al. [9]. This process involved the manual seg-
mentation of the liver in one master exhalation stack for each
subject and results in dense deformation fields between this
exhalation master and all respiratory states, see Fig. 2.

B. Establishment of Correspondence

In order to build a statistical model from the deformation
fields, inter-subject correspondence has to be established. We
developed a correspondence scheme that makes it easy to
apply the model to a new subject [8]. In a preparatory step,
the liver of each subject was manually segmented on each
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Fig. 2. Non-ririd registration of the 4D-MRI stacks results in dense spatio-
temporal motionfields.

(a) (b) (c)

Fig. 3. (a) Manually selected landmarks for correspondence on a selected
sagittal slice. (b) Manually defined mask. (c) Automatically generated re-
sampling of the liver contour based on mask and landmarks. The alternating
markers highlight the four individually controlled segments.

sagittal slice of one MRI scan. Additionally, four points were
manually selected on each slice to define the correspondence:
Two points where the liver is attached to the anterior and
posterior wall, respectively, as well as the highest point on
the superior end (diaphragm) and the lowest point at the
inferior end of the organ, see Fig. 3(a). We applied an arc-
length discretisation algorithm that combines the mask and
landmarks to resample the organ contour for each slice,
see Fig. 3(b)&3(c). The data is then again resampled in z-
direction because image acquisitions of different subjects can
consist of different numbers of slices. In order to establish
correspondence for points within the liver, an isotropic grid
was placed in the average liver and then transformed to each
of the remeshed surfaces using the Delaunay tetrahedrisation
approach [2], see Fig. 4. This finally gave a set of 20
topologically equivalent 3D liver volumes that constitute one
exhalation master v̂ for each subject and combined with the
registration results, dense spatio-temporal motion fields for
each grid point.

C. Statistical Model and Reconstruction

In our statistical model, a liver instance is represented
by a 3n-dimensional vector v = (x1, y1, z1, ... , xn, yn, zn),
where n corresponds to the number of model vertices. After
removing the shape information by taking the vector-field
difference between each respiratory state v and the subject’s
exhalation master state v̌, we get the motion data that is used

Mean shape with corresponding
interior grid

t = 0 t = 1

. . .

Exhalation master and subsequent
deformation fields of each subject

Warp of interior grid

to t = 0 using Delaunay

tetrahedrisation

Fig. 4. An isotropic grid is positioned inside the mean shape and warped
to the exhalation master shape v̌ at t = 0 of each subject. From t = 0 to
all forthcoming time steps, the deformation field is used to further warp the
grid to any of the subsequent respiratory steps. This results in dense intra-
and inter-subject correspondence.

to build the model: x = v−v̌. Principal Component Analysis
(PCA) on all samples X = (x1, . . . ,xm) yields the orthonor-
mal matrix of principal components U = (u1, . . . ,um−1)
and their corresponding Eigenvalues λ1, . . . , λm−1 that rep-
resent the standard deviation σi of the principal components
in descending order (

√
λi = σi). We can transform (and thus

decorrelate) the data by subtracting the mean offset vector
µ = 1

m

∑
xi, followed by a projection into model space:

c = diag(σ−1
i )UT (x− µ) , (1)

The deviation of a liver shape from its exhalation position
during respiration can now be described in terms of our
model,

v = v̌ + diag(σi)Uc + µ . (2)

From the observed partial information, we have to estimate
a suitable model coefficient vector c that represents the
motion information of the whole liver. In practice, this
information may come, for example, from structures tracked
in ultrasound, x-ray or portal images or from implanted
electromagnetic beacons. We use the approach described in
[3] to solve this problem. The partial observations are given
by the vector r = L(x − µ), with a mapping L : Rn →
Rl, l < n. Our aim is to find the model coefficient c for
the full vector x that describes our partial measurement. As
we cannot expect to find an exact solution, we define the
best reconstruction to be the one with minimal Mahalanobis
distance ||c||2, i.e. the one with highest prior probability. This
can be formulated as a minimisation problem with regard to
the model coefficients,

E = ||Qc− r||2 + η · ||c||2 , (3)

with Q = LU · diag(σi). The regularisation factor η allows
to trade off matching quality against prior probability. From
the singular value decomposition Q = VWVT we can
calculate the most probable coefficients in a Bayesian sense,

c = V diag(
wi

w2
i + η

)V
T

r . (4)

The final shape can then be computed by projecting the
model coefficient c back into spatial domain according to Eq.
(2). Note that Q is of size l× m̂, with m̂� m the number
of principal components used for reconstruction. Therefore,
Eq. (4) can be easily solved in real-time.
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III. EXPERIMENTS

Given the statistical motion model, it can be applied for
predicting the tumour location from surrogate markers. In
the following we first evaluate our model when a set of
3D surrogate markers is available. Then we progressively
increase the difficulty by predicting only based on 2D
surrogate marker information and lastly based on a simple
1D signal.

A. Prediction from Sparse 3D Data

In the first scenario [7] we assume that surrogate markers
can be tracked in three dimensions. This scenario is applica-
ble to a treatment e.g. with the Calypso System (Calypso
Medical Technologies, Inc) which provides accurate real-
time 3D positions of implanted markers. Similar data can
also be produced by bi-plane X-rays such as in the Cy-
berKnife Robotic Radiosurgery System (Accuray, Inc.). We
obtained an average error of 1.2 mm. Furthermore, the 95th

percentile of the errors was at 2.8 mm and the large errors
appeared mainly at inhalation. This suggests that the error
could be additionally reduced using amplitude gating, where
no prediction (and thus no treatment) is performed near full
inhalation, see Fig. 8

B. Prediction from Sparse 2D Data under Projection and
Noise

In the next scenario we evaluated the motion models in
a set-up where only 2D motion information is available [8].
Clinically, this applies to cases where ultrasound or portal
images are used to observe the organ during treatment. We
simulated such 2D data by projecting the 3D positions to 2D
planes under a large number of different projection angles
and additionally superimposed Gaussian noise (σ = 2 mm)
in order to simulate for various sources of errors that would
arise in a real-world setup. The model is able to accurately
predict the overall 3D deformation field, similarly to the case
where 3D surrogate information is available. Our method is
sufficiently robust to produce accurate reconstructions even
in presence of noise. For the sagittal view, we obtained an
average error of 2.6 mm. Figure 5 clearly shows that this
error depends on the projection angle (the sagittal view was
defined to be at position [0, 0]). The reason for this being
that the SI motion is not visible in near-axial projections.
The figure also suggests that there is a certain tolerance
to deviate from a perfectly sagittal viewing angle without
significantly sacrificing prediction accuracy. This, of course,
is an important insight for practical applications where such
parameters cannot be chosen freely.

C. Prediction from 1D and 2D Data with Amplitude Gating

In the last scenario we aim at compensating the organ
motion for an MR-guided HIFU system under free breathing.
As the MR system is used for temperature mapping of
the HIFU ablation process, no or only little scan time
can be used to track the tumour. In this scenario we thus
evaluated the prediction power assuming that the diaphragm
can either be tracked with an additional MR-compatible 2D
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Fig. 5. This surface shows the mean error over all subjects as a function
of the camera position. It can be nicely seen that the prediction accuracy
drops significantly when el approaches the values +90◦ and −90◦.

(a) (b)

Fig. 6. Selection of tracked organ position using template matching that
were used as input for prediction (a), close-up view (b).

ultrasound probe or using a simple and fast pencil beam
located on the diaphragm [1]. We applied normalised cross
correlation to track one point on the diaphragm over time.
Our prediction algorithm is then driven by this offset, which
gives a complete 3D position for the liver at every point
in time. Figure 6 depicts the navigator slice of one subject
together with the tracked positions of the diaphragm. We
extracted this data for each subject and obtained results for
continuous prediction as shown in Figure 7. The plot shows
results for 1D, 2D and 3D predictions. Table I summarise
the numbers. In the 1D case we only used the SI component
of the signal, which characterises the main mode of motion
for the liver. Using two components improves the result
slightly. In the 3D case, we used the actual 3D position of the
surrogate instead of the tracking results, as in Section III-A.
The results show that our model can be used even in cases
where only a 1D signal is available, e.g. from a respiration
belt or an optical tracker, although one has to keep in mind
that external signals do not always correlate sufficiently with
internal motion [12].

We combined our model-based approach with respiratory
gating in order to additionally reduce the prediction error.
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Fig. 7. Average errors for prediction using a single point near the diaphragm
in 1D, 2D and 3D.

TABLE I
MEDIAN ERROR AND PERCENTILES FOR LEAVE-ONE-OUT EXPERIMENTS

OVER 20 min OF RESPIRATION AND η = 2.

Input Median (mm) Percentiles (mm)

25th 50th 95th
1D 2.2 1.7 2.7 3.7
2D 2.1 1.6 2.2 3.5
3D 1.3 0.9 1.4 3.0

Figure 8 depicts results for motion compensation using 1D,
2D and 3D signals (as above) as well as for respiratory gating
without compensation. Model-based prediction outperforms
gating for any window size. The plot suggests that it is
possible to increase the gating window significantly without
sacrificing too much accuracy. For example, a gating window
of 5 mm results in an average prediction error of 1.8 mm
w/o compensation and 1.6 mm in the model-based case. As
the gating window is increased to 10 mm, we get an average
prediction error of 2.2 mm w/o compensation compared to
1.8 mm (model-based). The error for a 10 mm gating win-
dow with model-based motion compensation is thus almost
20% lower than without compensation.

IV. CONCLUSIONS

In this paper we showed how to build statistical motion
models and how they can be applied in various realistic
scenarios. The prediction power of the motion model was
quantitatively evaluated for all scenarios. The results show
that organ motion of an unseen subject can be estimated
within clinically acceptable margins using a statistical motion
model and information from surrogate markers. Additionally,
we presented a novel study that compares classical amplitude
gating to gating combined with our model-based approach.
The results are promising, as they show that our model can
improve the accuracy under respiratory gating and can also
be used to extend the gating window and thereby reduce
treatment times with only a marginal increase in prediction
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Fig. 8. Comparison of prediction error with amplitude gating. Model-based
gating outperforms traditional amplitude gating for any gating window size.

error. In the future work we will use surrogate marker motion
data from ultrasound images to predict the tumour location.
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