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Abstract—Noncathartic computed tomographic colonogra-
phy (CTC) could significantly increase patient adherence to
colorectal screening guidelines. However, radiologists find the
interpretation of noncathartic CTC images challenging. We
developed a fully automated computer-aided detection (CAD)
scheme for assisting radiologists with noncathartic CTC. A
volumetric method is used to detect lesions within a thick
target region encompassing the colonic wall. Dual-energy CTC
(DE-CTC) is used to provide more detailed information about
the colon than what is possible with conventional CTC. False-
positive detections are reduced by use of a random-forest
classifier. The effect of the thickness of the target region
on detection performance was assessed by use of 22 clinical
noncathartic DE-CTC studies including 27 lesions ≥6 mm.
The results indicate that the thickness parameter can have
significant effect on detection accuracy. Leave-one-patient-out
evaluation indicated that the proposed CAD scheme detects
colorectal lesions at high accuracy in noncathartic CTC.

I. INTRODUCTION

Although colorectal cancer is the second leading cause of

cancer deaths in the United States, it would be preventable

if its precursor colorectal lesions were removed early. How-

ever, less than 40% of age-eligible adults participate in full

colorectal examinations [12]. Patient surveys indicate that

the rigorous cathartic bowel cleansing required by current

colorectal examinations is the single most important reason

for patients to avoid colorectal screening [1].

Computed tomographic colonography (CTC) could be

used to implement a full noncathartic colorectal examination.

Bowel cleansing can be avoided with CTC, if a contrast tag-

ging agent is administered orally prior to the examination to

opacify residual bowel contents in CTC images [9]. However,

the interpretation of noncathartic CTC images is challenging,

because partial-volume tagging artifacts can imitate or dis-

tort the appearance of colorectal lesions [6]. Conventional

visualization and image processing tools provide limited

assistance in noncathartic CTC, because such tools have been

developed for cathartic fluid-tagging CTC that does not have

the challenging technical problems of noncathartic CTC [16].

Only few attempts have been made to develop dedicated

computer-assisted reading tools for noncathartic CTC [6],

[18], [3], [10].
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In this study, we developed a fully automated computer-

aided detection (CAD) scheme that uses volumetric detection

and dual-energy information to indicate the locations of

colorectal lesions in noncathartic CTC images. The appli-

cation of such a CAD scheme could increase radiologists’

detection sensitivity and reduce the variance of inter-observer

performance in noncathartic CTC.

II. METHOD

A. Materials

Twenty-five patients were prepared for a noncathartic dual-

energy CTC (DE-CTC) examination by use of a one-day

preparation. In the evening prior to the examination, the

patients consumed LoSo Prep (E-Z-EM, Inc., New York,

USA) with several cups of water. In the morning, the patients

ingested 50 ml of non-ionic iodine to tag residual bowel

contents. No intravenous contrast was used. The DE-CTC

scans were acquired in supine and prone positions with a

dual-energy CT scanner (SOMATOM Definition, Siemens)

at 140 kVp and 80 kVp energies. Slice thickness was 1 mm.

Expert radiologists correlated the DE-CTC data with the

findings of a conventional colonoscopy examination.

All 25 DE-CTC studies were included regardless of their

diagnostic quality. The studies were divided randomly into

a development set of 3 studies and an independent evalu-

ation set of 22 studies. The development set was used for

parameter estimation, whereas the evaluation set was used

for assessing the detection performance of the CAD scheme.

B. Automated Extraction of Colonic Lumen

For each CTC series, a linearly mixed volume is generated

from the reconstructed 140 kVp and 80 kVp energy images

[23] to provide shape and CT intensity information. The two

energy images provide material density information.

The CT examination table, which may be visible in CTC

images (Fig. 1a), is excluded from the binary mask of the

abdominal region by use of a ray-tracing scheme. Non-

air densities are thresholded at a CT attenuation value of

−400 Hounsfield units (HU) (Fig. 1b), and orthogonal rays

are projected anteriorly and posteriorly to detect the abdomen

as the first object along the rays that is thicker than 7.5 mm.

Voxels covered by the rays prior to hitting the abdomen are

set to the background value (Fig. 1c).

To ensure that the colonic lumen is not connected to the

air surrounding the abdomen due to limited field-of-view,

the surface of the abdomen is defined by use of an energy-

minimizing deformable model [11]. At each CT image, the

contour of the model is defined as c(s) = (x(s),y(s))T , where
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(a) (b) (c)

Fig. 1. Extraction of the abdominal region. (a) Axial CT image. (b) Binary
mask of non-air densities. (c) Final binary mask of the abdomen.

s∈[0,1], and x(•) and y(•) are coordinate functions. The

coordinate functions are initialized by projecting rays around

the region of CT gantry onto the surface of the abdominal

binary mask (Fig. 1c). The contour is evolved by minimizing

the functional ε(c) = S(c)+P(c), where

S(c) =
∫ 1

0
w1(s)|

δc

δ s
|2+w2(s)|

δ 2c

δ s2
|2ds (1)

and

P(c) =
∫ 1

0
P(c(s))ds=−C|∇[Gσ ∗ I(x,y)]|. (2)

Equation (1) denotes internal deformation energy, where

the physical parameter functions w1(s) and w2(s) determine

the extent to which the model can stretch or bend at a surface

point. Equation (2) attracts the model to the intensity edges

of the underlying abdominal skinline; Gσ ∗ I denotes the CT

image data convolved with a Gaussian smoothing filter, and

C controls the relative effect of (2).

The next step is to identify abdominal lumen components

that include the visible regions of colon, small bowel, stom-

ach, and the lung bases. These can contain air or tagged

materials. Air-filled regions are identified by thresholding

of CT attenuation values <−500 HU [21]. However, CT

attenuation values of tagged materials may overlap with

those of osseous structures or soft tissue. The latter can be

separated by use of the dual-energy information. By plotting

the CT numbers of the 140 kVp and 80 kVp images to

a plane (Fig. 2a), we see that soft-tissue materials (blue

crosses) are mapped along the line of identity (dotted line)

representing water-like materials (effective atomic number

of Z = 7), whereas heavier bone-like (calcium, Z = 20) and

tagged (iodine, Z = 53) materials are mapped above the line

of identity. By defining the dual-energy index feature [7]

DEI =
v80− v140

v80+ v140+2000
, (3)

where v80 and v140 are the CT attenuation values of the

80 kVp and 140 kVp images, respectively, we can identify

iodine by thresholding of DEI > 0.075 (Fig. 2b).

The region of colonic lumen is identified by an analysis

of air-filled and tagged lumen regions. A path is calculated

through each region [5]. Three anatomy-based landmarks are

detected automatically based on the locations of the lumen

regions: rectum, descending colon, and cecum. A lumen

path is traced through the colon starting from the segment

(a) (b)

Fig. 2. Sampled values of tagged, osseous, and soft-tissue materials from
clinical dual-energy CT scans. (a) The CT values of materials with different
effective atomic numbers are mapped along their unique characteristic lines.
Dotted line indicates the line of identity of water-like materials. (b) Dotted
line indicates a dual-energy index threshold for separating iodine from other
materials.

containing the rectum, through descending colon, and into

the cecum. Segments disconnected due to obstruction are

reconnected by use of a rule-based scheme [16]. The final

region of colonic lumen is extracted by application of a

coupled region-growing method on the lumen path [16].

C. Volumetric Detection

To perform volumetric detection, we extract a thick target

region encompassing the colonic surface. Let L̂ denote the

extracted region of colonic lumen (Figs. 3a and 3b). The

target region is calculated by

T = DL̂\L̂, (4)

where DL̂ denotes morphological dilation of L̂. If the lu-

men surface is located at the iso-intensity level of −500 HU

(Fig. 3b), the diameter of the dilation element that encom-

passes the colonic surface and its partial-volume region is

approximately 2.5 mm. However, it may be desirable to use

other wall-thickness values to optimize CAD performance.

Let t denote the desired thickness of the target region in

millimeters, and let Ir denote the spatial CT resolution in

millimeters (the physical image resolution data are provided

by the Digital Imaging and Communications in Medicine

(DICOM) file header). Because the average in-plane CT

image resolution is approximately 0.7 mm, the region of

calculated wall is largely unaffected by a change of t smaller

than Ir. However, if t > 2.5+2nIr (n∈N
+), it is necessary to

erode the lumen region L̂ by n layers of surface voxels before

the application of (4) to keep the extracted region centered

at around the colonic surface.

Lesion candidates are detected within the extracted target

region by use of a shape index (SI) feature. The SI can be

calculated as [8]

SI(p) =
1

2
−

1

π
arctan

k1(p)+ k2(p)

k1(p)− k2(p)
, (5)

where k1(p) and k2(p) are the principal curvatures of a

surface passing through a voxel p. The principal curvatures
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Fig. 3. Calculation of the volumetric shape index (VSI). (a) Colon
extraction provides a three-dimensionally extracted colonic lumen. (b) Detail
of the extracted colonic lumen (yellow color) on an axial CT image. (c)
Color mapping of the VSI values on an extracted colonic target region of
(b): high values (green color) indicate a lesion (arrow).

can be calculated in terms of the Gaussian curvature, K(p),
and mean curvature, H(p), of the surface, as [22]

ki(p) = H(p)±
√

H2(p)−K(p) (i= 1,2). (6)

To calculate the SI at an arbitrary voxel, we note that

the Gaussian and mean curvatures can be calculated in

terms of the first- and second-order partial derivatives of the

underlying intensity data, v, as

K =
1

v2
∑

(i, j,k)

{vi
2(v j jvkk− v jk

2)+2v jvk(vikvi j− viiv jk)} (7)

and

H =
1

|v|3/2
∑

(i, j,k)

{−vi
2(v j j+ vkk)+2v jvkv jk}, (8)

where (i, j,k) = Perm(x,y,z) = {(x,y,z),(y,z,x),(z,x,y)}.
Thus, by combining (5), (6), (7), and (8), we can calculate a

volumetric SI (VSI) at any voxel (Fig. 3c). Unlike the con-

ventional SI that characterizes local geometry of a surface,

the VSI characterizes local volumetric intensity flow at a

point.

Highest values of the VSI indicate bulbous densities that

can represent colonic lesions [22]. Before the calculation of

the VSI, tagged materials are pseudo-subtracted from the

CTC data to minimize their effects on shape calculation [16].

To detect lesion candidates, the values of VSI are thresholded

at VSI≥0.7, and the sites of lesion candidates are identified

by use of connected component analysis of the thresholded

voxels. The connected components are subjected to a dedi-

cated segmentation algorithm for extracting complete regions

of detected lesions [15].

D. Reduction of False Positives

The detected lesion candidates represent not only true-

positive detections but also FP detections from various

sources [19]. A random forest (RF) classifier [2] is used

to classify the CAD detections into true positives and false

positives. The RF is an ensemble of decision trees, where the

nodes represent hyper-rectangles dividing the input feature

space into disjoint regions. The leaves of the decision trees

represent predictions of the correct category of an input

sample. To perform a prediction on an input sample, the

decision trees vote for the correct category. The votes are

aggregated into a single RF prediction by majority vote. We

have previously shown that an RF classifier can outperform

state-of-the-art support vector machines in the classification

of CAD detections in CTC [20].

The input features of the RF are calculated from statistical

moments and Haralick features of voxel-based features. The

voxel-based shape features include the VSI and gradient

concentration features [14], and texture features include the

DEI, the CT number of the mixed energy volume, and a

dual-energy ratio feature DER= v80/(1+ v140).
To determine optimal features for the RF classifier, zero-

variance features and those having >0.8 correlation with

other features are eliminated from the input set of all features.

The final features are chosen by the application of recursive

feature elimination.

III. EVALUATION

The detection accuracy of the CAD scheme was assessed

by use of a leave-one-patient-out method. To investigate the

effect of the thickness of the extracted volumetric target

region on detection performance, the detection accuracy was

assessed at wall-thickness values of 3 mm, 4 mm, 5 mm,

and 6 mm. Because of limited CT image resolution, the

specified wall-thickness value (t) should be understood as

the minimum thickness of the extracted region. That is, the

actual thickness of the extracted region, t̂, may vary between

t≤t̂ < t+ Ir.

A colonoscopy-confirmed lesion was considered to be

detected correctly by CAD, if the center of a lesion candidate

detected by CAD was within the radius of the center of

a true lesion in CTC data. All other CAD detections were

considered as false positives. Because it is not practical for

a radiologist to review large numbers of CAD detections,

the CAD scheme was not allowed to display more than

15 detections (those with highest lesion likelihood) per

patient.

IV. RESULTS

There were 11 lesions ≥10 mm and 16 lesions 6 – 9 mm in

largest diameter in the 22 patients. These included 4 cancers,

20 adenomas, and 3 hyperplastic lesions.

Fig. 4 shows the effect of the thickness of target region on

the per-lesion detection sensitivity of the CAD scheme. For

lesions 6 – 9 mm in size, the detection sensitivity was highest

at t = 4. At t = 3, the detection sensitivity was significantly

lower (p < 0.01). At t = 5 and t = 6, the reduction in

detection sensitivity did not reach statistical significance

(p= 0.22 and p= 0.05, respectively). For lesions ≥10 mm

in size, the detection sensitivity was not affected by changes

of t, but at 100% sensitivity the average number of FP

detections per patient was lowest at t = 4 (2.8; highest: 7.7

at t = 5).

Fig. 5 shows the free-response receiver operating char-

acteristic curve of the detection performance of the CAD

scheme for the 27 lesions ≥6 mm in size at the optimal wall

thickness of 4 mm.
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Fig. 4. Per-lesion sensitivity of the CAD scheme at different thicknesses
of the extracted wall region.

Fig. 5. Per-lesion detection accuracy of the CAD scheme at the optimal
wall thickness of 4 mm. The number of CAD detections was limited to ≤15
per patient.

V. DISCUSSION

Conventional CAD for CTC detects lesions by use of

an explicit colon surface that can be distorted by image

noise and partial-volume effects. Our volumetric detection

method provides a more robust scheme that provides higher

sensitivity to subtle lesions [17].

The use of dual-energy information makes it possible

to extract the target region and to reduce false-positive

detections more precisely than with conventional single-

energy CTC. This yields statistically significant improvement

in detection accuracy over conventional CAD [13].

The results of this study indicate that the thickness of the

extracted target region can have significant effect on detec-

tion accuracy (Fig. 4). The effect is particularly noticeable

in the detection of lesions 6 – 9 mm in size.

Noncathartic CTC is one of the most promising new

approaches to colorectal screening, but clinical studies have

indicated large variation in inter-observer performance [6].

Although CAD could be used to reduce inter-observer vari-

ance and to increase reader sensitivity [4], noncathartic CTC

presents significant technical challenges for CAD [16]. In a

recent study, a surface-based CAD scheme for noncathartic

CTC was able to detect only 86% of polyps ≥10 mm in size

at 11.5 FP detections per patient (smaller polyps were not

considered). The high detection accuracy of our volumetric

CAD scheme suggests that it has potential to increase the

sensitivity and reduce inter-observer variance of noncathartic

CTC examinations.
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