
  

  

Abstract— In this paper, we study segmentation of tight 

junctions and analyze the formation and integrity of tight 

junctions in large-scale confocal image stacks, a challenging 

biological problem because of the low spatial resolution images 

and the presence of breaks in tight junction structure. We 

present an automated, three-step processing approach for tight 

junction analysis. In our approach, we first localize each 

individual nucleus in the image by using thresholding, 

morphological filters and active contours. By using each nucleus 

position as a seed point, we automatically segment the cell body 

based on the active contour. We then use an intensity-based 

skeletonization algorithm to generate the boundary regions for 

each cell, and features are extracted from tight junctions 

associated with each cell to assess tight junction continuity. 

Based on qualitative results and quantitative comparisons, we 

show that we are able to automatically segment tight junctions 

and compute relevant features that provide a quantitative 

measure of tight junction formation to which the permeability 

of the cell monolayer can ultimately be correlated. 

I. INTRODUCTION 

Over the past decade, recent advances in cellular imaging 
technology have made it possible to capture high-resolution 
images of cellular structures and processes that enable 
biologists to investigate fundamental questions in cell 
structure, morphological development, and cellular 
disorders. One dynamic structure of interest is the blood-
brain barrier (BBB), a selective barrier formed by epithelial 
cells that is highly restrictive in the transport of substances 
between the blood and the central nervous system [1]. The 
epithelial cells found in the BBB form complex tight 
junctions by the interaction of several transmembrane 
proteins, such as occludin and claudin, which effectively seal 
the paracellular space. Paracellular transport can be 
regulated in response to different conditions, in part through 
the action of accessory proteins, such as ZO-1, which link 
transmembrane proteins to the actin cytoskeleton. 
Disruptions in BBB barrier function have been implicated in 
several neurodegenerative disorders and can be a 
consequence of stroke and traumatic brain injury [2]. In vitro 
systems are needed to understand how the formation and 
regulation of tight junction structures ultimately affect 
permeability and transport across the BBB.  These data will 
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Figure 1.  3D image of nucleus and tight junction protein ZO-1. 25 cells 

are visible with differing tight junction morphologies.  

provide much needed insights for effective drug design and 
models of disease progression. 

With the use of epithelial cell lines and 
immunofluorescence methods, it is possible to collect 
detailed three dimensional images of tight junction structures 
using confocal laser scanning microscopy. However, 
computational methods to analyze these cell structures have 
not kept pace with imaging technology, and biologists still 
rely largely on manual analysis procedures which are 
laborious and time-consuming. Therefore, the automatic 
analysis of cell structure from image reconstructions of tight 
junctions is essential to fully extract the data found in these 
valuable sources. 

In this paper, we propose a method to segment and 
quantify disruptions or breaks in tight junctions from 
maximum intensity projections of optical sections acquired 
using a laser scanning microscope as shown in Fig. 1, in 
which 20 to 25 nuclei are visible from a cell culture. Low 
spatial resolution and the presence of breaks in tight junction 
structure of cells make the structural analysis of tight 
junction morphology a challenging biological problem. 
Therefore, we present a fully automated method for detecting 
nuclei, segmenting the tight junctions of each cell, and 
analyzing the cells with respect to the morphological 
structure of their tight junctions. We give the details of the 
technical approach in the next section. The data acquisition 
system and experimental results are presented in Section 3. 
Finally, we conclude in Section 4. 

II. TECHNICAL APPROACH 

In our approach, we analyze the tight junction formation 
and integrity by following three main steps: (1) nucleus 
detection, (2) tight junction segmentation and 
skeletonization, and (3) feature extraction. We first localize 
each individual cell in the maximum intensity projection 
using thresholding, morphological operators and active 
contours. By using each nucleus position as a seed point, we 
automatically segment the tight junctions. Then, the 
skeletonization step generates the boundary of segmented 
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Figure 2.  Representative figures of nucleus segmentation: (a) 3D image 

reconstruction of a nucleus and its tight junction cropped from a larger 

whole-field image shown in Fig. 1; (b) its maximum intensity projection of 

(a), where blue is nucleus and green is Z01; (c) nucleus segmentation result 

with highlighted boundary; (d) Final skeleton of tight junctions in (a); and 

(e) boundary regions. 

tight junctions. Finally, features are extracted from each cell 
and its boundary to quantify the absence of tight junctions in 
the image. More details about these three steps are given in 
the following sections. 

A. Nucleus detection 

Nucleus detection is essential to determine which tight 
junction segments belong to which cell. In our approach, we 
detect multiple nuclei in a low magnification maximum 
intensity projection using a combination of thresholding, 
grayscale morphology operators, and active contours. 

The first step in nucleus detection is thresholding the 
maximum intensity projection of the nucleus channel of the 
image to separate the nucleus and background regions. 
Initially, the threshold value is determined by Otsu's 
histogram-based automatic thresholding method [3]. If this 
method does not produce a satisfactory result, the user can 
manually change the thresholding value to achieve a better 
thresholding result. After thresholding, connected component 
analysis labels all separate image regions as different nuclei 
using 8-connectivity, and the size of each nucleus is 
computed to eliminate the small, non-cellular particles. 

Morphology operators shrink, enlarge and filter image 
regions based on a particular geometrical shape. Since the 

shape of a typical nucleus can be approximated as a disc, the 
image is first filtered by an erosion operator with a circular 
structuring element whose radius is equal to the size of the 
minimum volume enclosing the typical nucleus. By using 
each centroid as a seed point, an active contour algorithm 
automatically determines the boundary of each nucleus based 
on the Chan-Vese energy [4]. Fig. 2(a-b) shows a 
representative nucleus segmentation result of a cell cropped 
from the larger whole-field image shown in Fig. 1 and its 
maximum intensity projection, respectively. The resulting 
segmentation is used as the boundary of each nucleus as 
shown in Fig. 2c. 

B. Tight Junction Segmentation and Skeletonization 

In order to segment the tight junction protein (ZO-1) 
from background, we need to make the following two 
assumptions. First, intensity values of tight junctions and 
nuclei are higher than intensity values of background and 
non-cellular materials. Second, each nucleus is surrounded 
by tight junctions. In an ideal segmentation case, an optimal 
threshold perfectly separates the cellular materials from the 
background and extracts the structure of the tight junctions 
for every cell. Since the distribution of the fluorescence 
material among different cellular regions is not uniform, the 
intensity values of tight junction segments are diverse in the 
optical sections. Moreover, the existence of background 
noise contributes to the difficult task to find the optimal 
threshold for tight junction segmentation. Therefore, we 
utilize a noise reduction algorithm and an active contour 
algorithm to segment the regions between the nucleus and 
tight junctions, which is called the cell body in the rest of the 
paper. 

Since the distribution of background noise in the cell 
body can be approximated by Gaussian noise, the Wiener 
filter is a viable choice for noise reduction. Based on our 
second assumption, there is always a nucleus in the cell 
body. Therefore, each nucleus is used as a seed point for the 
active contour algorithm to automatically segment the cell 
body based on the Chan-Vese energy [4].  

Tight junctions are formed across the paracellular space 
between adjacent cells as shown in Fig 2b. Skeletonization is 
a procedure that generates a unit-width line to represent tight 
junctions; thus, it is essential to simplify the analysis of 
morphological structure of the tight junctions. We utilize a 
modified version of the iterative 3-D skeletonization 
algorithm proposed in [5]. The original thinning algorithm 
iteratively peels the outermost layer of the binary image of 
the dendritic tree until only the central voxels of dendrites 
remain. 

In this approach, the voxels which have the least number 
of neighbors are defined as the outermost layer and deleted 
first. Kerekes et al. [6] extended this approach by taking the 
intensity values of the corresponding voxels into account for 
the skeletonization of the grayscale segmentation image. 
Since the dimmest voxels in the outmost layer are deleted 
first, this approach keeps the brightest voxels of each tight 
junction in the initial skeleton. Fig. 2d shows the results of 
the skeletonization algorithm for tight junctions shown in Fig 
2b. 
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Figure 3.  Illustration of feature extraction for percentage of continuity 

(PoC) of tight junctions in boundary region (shown in Fig. 2e). Breaks are 

labeled as red and continuous boundary is labeled as white. 

In order to extract features from cells, we first need to 
define the boundary region for each cell. We define each 
segmented cell body as the inner boundary of its boundary 
region and each cell periphery as the outer boundary for the 
cell. Therefore, the boundary region for each cell is defined 
as the area between inner and outer boundary as shown in 
Fig. 2e. 

C. Feature Extraction 

In order to analyze the tight junctions, we extracted the 
following features from each cell: (1) number of nuclei, (2) 
area of each nucleus, (3) peripheral length of tight junctions, 
(4) ZO-1 intensity at the tight junctions, (5) percentage 
continuity of tight junctions, (6) number of breaks in tight 
junctions, and (7) average length of breaks in tight junctions. 

Continuity of tight junctions around the periphery is 
essential in assessing the extent of tight junction formation 
and integrity which is indicated by ZO-1 intensity at the 
boundary region being higher than the defined threshold. If 
the ZO-1 intensity at any part of the boundary region drops 
below the defined threshold, it is defined as a break along the 
cell periphery. Fig. 3 illustrates the feature extraction for 
percentage continuity of tight junctions in boundary region at 
various ZO-1 threshold values. 

III. DATA AND EXPERIMENTAL RESULTS 

A. Data acquisition 

Human umbilical vein epithelial cells (HUVEC) were 
grown to confluence on fibronectin coated coverslips and 
prepared for microscopy using DAPI to detect nuclei and 
anti-Z0-1 antibodies (Invitrogen) to detect tight junctions.  
Images were collected using a Zeiss LSM710 confocal laser 
scanning microscope.  Optical sections were collected at 0.5 
µm step-size increments and processed as a maximum 
intensity projection using Zeiss Zen 2009 software. Images 
were collected using either a 20x or 40x objective, with 
approximately 20-200 cells in each field. Each volume is 
approximately 512x512x5 voxels in size. 

  
(a)                                                       (b) 

  
(c)                                             (d) 

Figure 4.  (a) Maximum intensity projection of the whole-field image 

shown in Fig.1, (b) Each segmented nucleus, (c) Final skeleton of tight 

junctions in (a) and (d) Boundary regions of each cell. 

B. Experimental Results 

In this section, we show test results from applying our 
proposed algorithm to multiple cells in large-scale 3D image 
stacks. In two experiments, we tested our automatic nucleus 
detection and tight junction segmentation algorithms. The 
first dataset (HUVEC_anti-ZO-1_DAPI-2) contains 3D 
image stacks collected as described in the data acquisition 
section above with the higher zoom factor. There was no 
available ground truth for these datasets. 

The maximum intensity projection of the whole-field 
images, nucleus detection results, tight junction segmentation 
and skeletonization results of the first image volume are 
shown in Fig. 4 (a-d), respectively. We observe that each 
nucleus is detected and segmented precisely; thus the 
skeletonization and boundary region segmentation appears to 
be accurate.  

After determining the final boundary regions, we extract 
the features from the first data set shown in Fig. 4a. Fig. 6a 
shows the average percentage continuity of tight junctions. 
We observe as expected that the average percentage of 
peripheral continuity decreases as the ZO-1 threshold value 
increases. The total number of breaks in tight junctions is 
shown in Fig. 6c, and we observe that the total number of 
breaks in tight junctions first increases and then decreases as 
the ZO-1 threshold value increases.  This happens because as 
the length of each break increases, sometimes multiple small 
breaks merge and become a long break. In Fig. 6e, we 
observe that the average length of breaks in tight junctions 
increases as ZO-1 threshold value increases. 

In the second experiment, we test our proposed algorithm 
with the larger whole-field image stacks (HUVEC_anti-ZO-
1_DAPI-1). The maximum intensity projection of the 

Threshold = 0; PoC = 100% Threshold = 10000; PoC = 92% Threshold = 20000; PoC = 71% 

Threshold = 30000; PoC = 47% Threshold = 40000; PoC = 25% Threshold = 50000; PoC = 12% 
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(a)                                                     (b) 

  
(c)                                                    (d) 

Figure 5.  (a) Maximum intensity projection of the whole-field image, (b) 

Each segmented nucleus, (c) Final skeleton of tight junctions in (a) and (d) 

Final boundary regions of each cell with different colors. 

whole-field images, nucleus detection results, tight junction 
segmentation and skeletonization results are shown in Fig. 5 
(a-d), respectively. By close manual inspection, we observe 
that each nucleus is detected and segmented with high 
precision; thus, the skeletonization and boundary region 
segmentation exhibits high accuracy. 

After determining the final boundary regions, we extract 
the features from the data set. Fig. 6b shows the average 
percentage continuity of tight junctions. We observe similar 
trends to those in the first experiment, specifically that the 
average percentage of peripheral continuity decreases as ZO-
1 threshold value increases, the total number of breaks in 
tight junctions increases and then decreases, and the average 
length of breaks in tight junctions increases as ZO-1 
threshold value increases.  These results for the second 
experiment are depicted in Figs. 6b, 6d, and 6f.  

IV. CONCLUSION 

In this project, we studied segmentation of tight junctions 
and analyzed tight junction formation and integrity in 3D 
confocal images. Here we presented a three-step processing 
algorithm to analyze tight junctions. In our approach, we first 
localize each individual nucleus in the image by using 
morphological filters and active contour. By using each 
nucleus position as a seed point, we automatically segment 
the cell body based on the active contour. We then use 
intensity-based skeletonization algorithm to generate the 
boundary regions for each cell, and features are extracted 
from tight junctions of each cell for disruption analysis in 
tight junctions. Based on qualitative results and quantitative  
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Figure 6.  Results for the first and second experiments, respectively.           

(a-b) Average percentage continuity of tight junctions, (c-d) average 

number of breaks in tight junctions, and (e-f) average length of breaks 

in tight junctions. 

comparisons, we show that we are able to automatically 
segment tight junctions and compute relevant features that 
quantitatively measure the Z01 concentration and continuity 
between cells. Ground truth was not available to properly 
validate our algorithm; however, larger-scale validation 
using electrical conductivity measurements across the cells 
represents a possible direction for future work.  Nonetheless, 
we believe that our proposed approach represents a useful 
tool for future statistical analysis of tight junction formation 
and integrity. 
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