
  

 

Abstract— In this paper, we report on a new method for 

potential diagnosis of Parkinson’s Disease (PD) based on the 

analysis of the spontaneous response of vestibular system 

recorded by Electrovestibulography (EVestG). EVestG data of 

20 individuals with PD and 28 healthy controls were adopted 

from a previous study. The field potentials and their firing 

pattern in response to whole body tilt stimuli from both left and 

right ears were extracted. We investigated several statistical 

and fractal features of the field potentials and also their firing 

patterns. One-way analysis of variance (ANOVA) was used to 

select the features showing the most significant differences 

between individuals with PD and the age-matched controls. 

Linear Discriminant analysis classification was applied to every 

selected feature using a leave-one-out routine. The result of 

each feature’s classifier was used in a heuristic weighted 

average voting system to diagnose PD patients. The weights of 

the voting system were the (posterior) probabilities calculated 

by the designed classifier to indicate a subject related to a 

specific class. The results show more than 97% accuracy for 

PD diagnosis. Given that the patients were at different stage of 

disease, the high accuracy of the results encourages the use of 

vestibular response for PD diagnosis as a plausible quick and 

non-invasive screening tool. 

I. INTRODUCTION 

Idiopathic Parkinson's disease (PD) is the second largest 
neuro-degenerative disorder, and is estimated to afflict 
approximately 3% of the population over the age 65 [1]. It is 
not yet known how to prevent or cure PD but there are 
different treatments including medication, deep brain 
stimulation, and dopaminergic cell transplantation. Early 
diagnosis of PD would greatly assist its treatment by 
allowing administration of neuroprotective agents before the 
appearance of motor symptoms and while a higher 
percentage of dopamine nigral cells still remain [2]. 

Parkinson’s disease belongs to a group of conditions 
called motor system disorders. It occurs as a result of a slow 
and progressive loss of dopaminergic neurons. The loss of 
dopaminergic neurons causes the reduction of dopamine 
neurotransmitters concentration in neural pathways and it 
weakens the motor cortex signals that coordinate muscle 
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movement [2]. Currently, no early detection method exists 
for PD. Its diagnosis is based on the patient’s medical history 
and neurological examination. A definite diagnosis of PD 
requires autopsy [2].  

There is a link between dopamine and the vestibular 
system; dopamine receptors (D2) have been identified in 
medial vestibular nuclei and lateral vestibular nuclei [3]. 
Also, meaningful levels of dopamine have been detected in a 
region of the vestibular nuclei [4]. Abnormalities in the 
vestibular system have been previously documented in PD, in 
relation to an abnormal vestibular-ocular reflex [5]. 

Electrovestibulography (EVestG) [6, 7] is a non-invasive 
technique to record neural activity from the vestibular 
apparatus and vestibular nuclei. EVestG measures a 
vestibular driven response stimulated by passively whole 
body tilting the subject, who is seated in a special hydraulic 
chair located in an electrically and acoustically shielded 
chamber.  The EVestG signal is recorded during dynamic and 
static phases via an electrode resting proximal to the 
tympanic membrane [6, 7]. The electrodes are simply and 
painlessly positioned and rested close to the left and right ear 
drums of the subject.  

In previous studies on the use of EVestG for PD 
diagnosis the main width of the EVestG field potentials 
during the side tilt stimuli was found significant between the 
patients and controls [8], and also the correlation of this 
feature with the severity of PD was shown to be significant 
9]. In our previous study [10], using the same data as in [8, 
9], we found the Katz Fractal Dimension (KFD) of the timing 
intervals of the field potentials from the side tilt stimulus to 
be significant between the patients and controls.  In our 
recent study [11], we used features extracted from both the 
field potentials and their time interval signals of the side tilt 
of the left and right ear data. Then, we applied linear 
discriminant analyses (LDA) classification for each of the 
statistically significant feature, followed by a heuristic voting 
classifier by averaging the vote of each of the single feature 
classifier. The results showed about 95% accuracy. 

In this study, we followed the same steps as in [11] but with 
one main difference: we used a weighted average voting 
classifier, where the weighting coefficients were the posterior 
probabilities obtained for every subject in LDA classification 
algorithm. We treated every feature as a symptom with a 
weighting coefficient reflecting its diagnostic importance, 
and investigated whether this weighted average voting 
system would improve the overall accuracy.     
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II. METHOD 

A.  Data 

We used data from a previous study of ours [11], 
including data of 20 individuals with PD (65.8 6.8 y, 10 
males) and 28 healthy individuals (54.5 7.7 y, 14 males). 
The PD patients’ EVestG signals were recorded, while they 
had been off their medication (Levadopa preparations) for at 
least 4 hours and typically overnight. Among PD subjects, 6 
were diagnosed to have PD’s symptoms mostly on the right 
side, 5 on the left and 9 on both sides of their body. The 
severity of the disease was assessed using the Modified 
Hoehn and Yahr PD Staging Scale [12]. In this test, the 
tremor along with other initial signs (symptoms) was used to 
grade the severity of the disease. Future applications may 
look at separating other tremor syndromes. Based on this 
scale, one patient was severely affected (had the degree of 
severity of 5 out of 5), while the others were at mild to 
moderate stages (had the degree of severity of 1-3 out of 5). 
One of the PD subjects was excluded from the analysis 
because it was right affected and its left side data could not 
be used due to noise and artefact. 

B. EVestG Experiment 

The EVestG experiments [6, 7] include several tilting 
stimuli. We used the side tilt stimulus, in which almost the 
entire vestibular organ in the inner ear is stimulated. The side 
tilt stimulus has a duration of 120 s; it begins with a 20 s 
background recording, with the subject sitting in a still 
position without any inclination, followed by a 3 s tilt to the 
right (about 40 degrees), 17 s rest in the tilted position, 3 s 
moving back to center, 37 s rest at the center position, 3 s tilt 
to the left, 17 s rest at the left position, 3 s return to the center 
and 17 s rest at the center (Fig. 1). The periods of interest are 
1.5 s before the movement, labeled as background (BGi), and 
the 3 s tilting stimuli. The first 1.5 s after the onset of the tilt 
is marked as OnAA and the next  1.5 s is marked as OnBB, 
representing acceleration and deceleration phases, 
respectively.  Since the chair is tilting to both left and right 
sides while recording both right and left ears, there are both 
contralateral (CT) and ipsilateral (IP) stimuli in each tilt. The 
EVestG signal was recorded at the sampling rate of 41666 
Hz. This high sampling rate was necessary as one of the 
components of EVestG signal (the Sp point) is only a few 
samples wide. The EVestG-evoked response field potentials 
were extracted using the Neural Event Extraction Routine 
(NEER) [13].  

C. Signal Analysis 

We used the EVestG field potential signals and their 
corresponding firing time interval signals of the BGi, OnAA, 
and OnBB segments of the tilts from center to either side. 
Given that signals of both ears were recorded, for every 
subject in each of the 3 segments, we had 4 signals: 
Contralateral left (CTL), contralateral right (CTR), ipsilateral 
left (IPL) and ipsilateral right (IPR); this resulted in 12 
different shape and firing pattern signals for each subject. 
Figure 2 shows a typical EVestG field potential response 
signal of the OnBB segment for a CTL tilt of a control  

 

Figure 1.  The pattern of the chair movement during the side tilt trial. 

subject.  The waveform's minimum point is called the action 
potential (AP) point, and the time duration of 3-6 ms before 
and after the AP can be assumed as the pre- and post- 
potential intervals (Fig 2.). The features were extracted from 
these two time regions in this study. 

Moreover, we investigated the changes in the differences 
between BGi and either OnAA or OnBB segments to 
examine the effects of dynamic changes in response from 
resting to acceleration or deceleration, and also the 
differences between the two phases of movement. In 
addition, the difference between the right and left ears’ signal 
were investigated to test for vestibular asymmetry. Given the 
two sides of recording, 6 segments in each recording and 
accounting for differences between dynamic and background 
segments in each type of tilt, overall we ended up with 48 
signals to extract features for each subject. Since the NEER 
algorithm removes segments of the original signal that are 
corrupted by large artifact (due to hydraulic chair, muscle 
artifact, movements, etc.), not all the segments were of 1.5 s 
duration; we excluded the segments shorter than 1.36s. 
Therefore not every subject had all the extracted features; this 
was another reason to consider each feature as a symptom 
and develop a heuristic average voting classifier. 

For PD subjects, who were unilaterally affected, only the 
EVestG signal of their opposite side was considered as the 
PD signal. Thus, we used left signals of the right affected PD 
subjects, right signals of left affected patients, and both right 
and left signals of bilateral PD patients. The following classes 
of features were calculated from every segment followed by a 
Statistical test of ANOVA [14]. In all statistical tests a p-
value < 0.05 was considered significant. 

1) Statistical Features 
We calculated mean, mean of the absolute value and 

variance of the pre- and post-potential regions of every field 
potential signal. We also calculated the average power of the 
aforementioned intervals for the range of 100-11000 Hz. As 
for the firing time signals, we calculated the total number of 
firings and the variance of the histogram of the time intervals 
(Fig. 3).  

2) Fractal Dimension 
Katz Fractal dimension (KFD) is a geometrical measure 

of the signal’s complexity representing the fractional 
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Figure 2.  The EVestG field potential of OnBB segment for a CTL tilt of a 

control subject. 

 

Figure 3.  The histogram of the time interval signal for IPL, IPR, CTL, and 

CTR tilts for one control. 

dimension of a self-similar (or self-affine) object [15]. We 
used Katz algorithm to calculate the FD values due to its 
robustness with respect to noise [16].   

On the other hand, Entropy-based fractal dimensions, 
such as the Information dimension (DI) and the Correlation 
dimension (DC) are methods for characterizing the shape of 
self-affine objects/signals [17]. We used KFD, DI and DC 
fractal dimensions of the firing time and field potential 
signals of each segment for each subject.  

3) Weighting Average Voting Classifier 
Each feature was used in a single feature classifier using 

linear discriminant classification algorithm (LDA) [18]. Due 
to the small size of subjects and to remove any bias of over 
fitting problem, we used a leave-one-out routine [18] for 
training and testing the classifiers. As mentioned before, not 
all subjects had all the features (either due to artifacts or due 
to being unilaterally affected); therefore, we considered each 
feature as a symptom, and used a heuristic method of 
weighted average voting symptoms: each feature (symptom) 
was used with LDA classifier to assign the left-out subject 
(all other subjects were used as training dataset) as PD patient 
or healthy. LDA calculates two posterior probabilities (pp) 
(since we have only two groups of data), which shows the 
probability of the subject being as healthy or patient; these 
two pp values are normally used to classify the test subject to 
a class (the one with higher pp value). In our previous study 
[11] we assigned a vote of 0 or 1 for either healthy or PD 
patient groups and then averaged the votes across all the 
single classifiers. In this study, however, we averaged the pp 
values of all single feature classifiers and then classified the 

subjects as healthy or patient depending which of the average 
pp was higher.  In another word, we used the pp values as the 
weighting coefficients for the votes and hence, the name of 
weighting average voting classifier was chosen. Our heuristic 
classification can be formulated as:  
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where, j represent a subject, pp(i,j) is the posterior 
probability of feature i classifier for either healthy or PD 

groups. Obviously, ).(_1)(_ jppAvejppAve PDH  If 

)(_)(_ jppAvejppAve PDH  , the subject is classified as 

healthy or vice versa. It should be noted that n is the number 
of available features/classifiers for each subject; therefore 
the value of n may differ between the subjects. In fact, one 
of the reasons to develop this heuristic method of 
classification was that not all subjects had all the 
characteristic features (due to noise or artefact in original 
signal).  

III. RESULTS 

Table 1 shows the list of significant features and the 
original signals they were calculated from. It also shows the 
result of ANOVA for the selected features. The results of our 
heuristic classification showed 100%, 96.4% and 97.9% 
sensitivity, specificity and accuracy, respectively. This 
implies that all the PD patients (19 in total) were classified 
correctly. Only one control subject was misclassified. Further 
analysis such as Receiver-operator characteristic (ROC) with 
Area under the curve (AUC) might be suggested to validate 
the classifier [19]. 

 We also tested the significance of the extracted features 
using a randomly selected 70% subset of the data. Nine out 
of the 18 features remained significant.  However, we still 
used all the 18 features for classification since some subjects 
did not have all the features due to noise or because we had 
to use the signals of one side only (one side affected PD 
subjects). Also, due to small size of dataset there is no way to 
ensure which features are the final best characteristic 
features. Therefore, we used the ad hoc classification 
procedure as described. This extra test was performed to 
examine the plausible over-fitting of the selected features for 
the population of this study.  

IV. DISCUSSION 

The extracted features are either calculated directly from 
the shape or time interval of the field potentials (group 1) or 
calculated from the differences between the segments or sides 
(group 2). Interpretation of the features of the first group is 
more straight forward; perhaps a larger population of data 
from a future study will provide a better interpretation for the 
2nd group of features. 
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TABLE I.  LIST OF SIGNIFICANT FATURES 

Feature Name Original Signal p_value 

Mean of Pre-Potential BGi, CT(R) 0.023 

Mean of Pre-Potential BGi, CT(L-R) 0.013 

Mean of Pre-Potential BGi-OnBB, CT(L-R) 0.046 

Mean of Post-Potential BGi-OnAA, CT(L) 0.02 

Mean of abs Pre-Potential OnAA-OnBB, IP(L+R) 0.005 

Mean of abs Pre-Potential BGi-OnBB, IP(L-R) 0.03 

Mean of abs Post-Potential BGi, CT(R+L) 0.007 

Variance of Post Potential BGi-OnAA, IP(L) 0.0004 

Variance of Post Potential OnAA-OnBB, CT(L-R) 0.006 

Average Power of 

Pre-Potential 
OnAA-OnBB, IP(L-R) 0.03 

Average Power of 

Post-Potential 
OnAA, IP(L-R) 0.017 

Number of Firings OnBB, CT (R) 0.012 

Variance of pdf 

of Time Interval signal 
OnBB, IP(L-R) 0.025 

Information Dimension of 

Pre-Potential 
OnBB, IP(L-R) 0.03 

Information Dimension of 

Post-Potential 
BGi-OnAA, IP(L-R) 0.025 

Correlation Dimension of 

Pre-Potential 
BGi, IP(L-R) 0.018 

Katz Dimension of 

Firing time signal 
OnAA, IP(R) 0.02 

Katz Dimension of 

Firing time signal 
OnBB, IP(R) 0.03 

 
 Among the features related to the firing time signals, the 

FD values of the controls were higher than that of the PD 
patients, implying a higher complexity of the signals of the 
control group versus PD group. This observation was 
previously seen among the fractal dimension of pathological 
signals versus healthy signals [20, 21]. We may speculate 
that higher FD values in control subjects represent higher 
degree of self similarity implying a more synchronous firing 
among control subjects compared to PD subjects.  

Another firing time feature, was the variance of pdf of the 
time interval signal that showed significantly larger values 
for PD subjects than controls. We assume that a neurological 
condition such as PD affects the neurons’ firing pattern so 
that it may cause a different distribution compared to healthy 
neural firing.   

Our heuristic classification method using the average 
posterior probabilities of the LDA signal feature classifiers 
showed high performance in terms of accuracy, sensitivity 
and specificity. For pathological signal diagnosis, we propose 
the use of such ad hoc voting classification as it is more 
reliable and logical; it is similar to the way a physician 
diagnoses a condition or disease. The main advantage of this 
method is that if a feature does not exist for a subject due to 
noise/artefacts, still that subject’s data can be used and a 
diagnosis can be made. We had used a similar approach but 
using the average vote of the signal classifiers in our recent 
study [11]. However, the use of averaged posterior 
probabilities in this study instead of a vote of 0 or 1 used in 
[11] for final classification has increased the accuracy, and 
seems to be a more logical approach.   

Overall, the results of this study shows a new potential of 
EVestG signals towards generating an adequate set of 
biofeatures for diagnosis, monitoring, and perhaps measuring 

the efficacy of drug treatment during early PD stages. The 
results may lead to a simple, objective, and non-invasive 
clinical assessment of Parkinson Disease. 
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