
  

 

Abstract— Cognitive decline represents the biggest limiting 

factor to independence in older adults. Speech analysis has 

emerged as an alternative to standard cognitive assessment 

tools. Temporal segmentation of speech is reported in many 

studies and typically employs a static threshold to define a 

pause. This study investigated the effect of using pause and 

utterance duration distribution data in differentiating between 

cognitively healthy and impaired older adults. Three sets of 

features were extracted from 187 speech recordings: temporal 

features using a static 250ms threshold; temporal features using 

a dynamic threshold; and pause and utterance duration 

distribution parameters. The ability of each of these sets to 

differentiate between cognitively healthy and cognitively 

impaired participants was investigated using a Linear 

Discriminant Analysis (LDA) classifier. Improvements of 0.22% 

(to 64.20%) in sensitivity, 6.33% (73.12%) in specificity, and 

3.27% (68.66%) in overall accuracy were observed in the 

performance of the classifier using the pause and utterance 

duration distribution parameters when compared to the static 

temporal features. The use of the dynamic threshold had a 

negative impact on the classifier performance, with a decrease 

of 5.73% (to 58.25%) in sensitivity, 1.10% (65.69%) in 

specificity, and 3.42% (61.97%) in accuracy. 

I. INTRODUCTION 

One of the negative aspects of ageing is the natural 
process of cognitive decline, which follows a linear 
trajectory over adulthood, accelerating into old and very-old 
age [1]. Subtle changes in cognitive function, however, can 
also be symptomatic of a progression towards mild cognitive 
impairment or dementia [2].  

A debilitating condition predominantly occurring in older 
people, dementia is caused by disease of the brain, and is 
characterized by a progressive global deterioration in 
intellect including memory, learning, orientation, language, 
comprehension and judgment [3]. Early detection of 
dementia is widely accepted as being beneficial both to those 
with dementia and their carers and evidence suggests that 
treatments are likely to have maximum effect in the early 
stages of the condition [4]. 
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 Screening for cognitive decline is typically performed 
using the Mini-Mental State Exam (MMSE), a 30-point 
assessment tool typically administered in a clinical 
environment. The MMSE however is inherently flawed with 
reports of associated learning effects, ceiling effects and 
floor effects [5]. These effects significantly limit both the 
precision of the test and the frequency with which it can be 
administered, rendering it redundant in detecting subtle 
changes in cognitive function over time. 

 Speech analysis has emerged as a robust alternative to 
the MMSE in assessing cognitive function [6][7]. A study 
conducted by D’Arcy et al [6] investigated seven temporal 
features relating primarily to pause and utterance duration. 
Pause related features produced the strongest discrimination 
between cognitively healthy and cognitively impaired 
subjects. The conclusion being that it is what is not said 
rather than what is said that is an important feature of speech 
from people who are cognitively declining. This observation 
was also reported by Rapcan et al [8], Hird & Kirsner [9], 
and Pakhomov et al [7], and in studies reported by Roark et 
al [10]. 

 Despite the apparent significance of pause-oriented 
features, much of the research into pause detection has 
employed criteria that is either poorly defined or based on 
the speech performance of neurologically intact adults [11]. 
Minimum pause duration is consistently used as a criterion 
for detection of pause boundaries [11] and is furthermore 
one that varies considerably across the literature, reflecting 
the arbitrary nature in which most researchers have 
employed it [12] [13]. Goldmann-Eisler [14] advocated the 
use of a minimum pause duration of 250ms, and this 
threshold has proliferated many of the studies into pausing 
behavior including Stassen et al [15], D’Arcy et al [6], and 
Rapcan et al [16]. Furthermore there are numerous examples 
of studies that deviated from this 250ms value for minimum 
pause duration – a review of relevant publications conducted 
by Kirsner et al [12] yielded 32 different values, ranging 
from 100 up to 300ms and with a median of 250ms. 
Minimum pause duration thresholds encountered as part of 
this study included 40ms [17], 150ms [7], 270ms [18], and 
1000ms [10]. Given the variability in pause threshold values, 
it is not immediately evident what is an appropriate value for 
minimum pause duration.  

 Initiated by Kirsner et al [12], this traditional approach 
to pause identification has been readdressed, and emerging 
from this renewed interest is evidence that pause duration 
exhibits a two-component mixed lognormal distribution, one 
component associated with short pauses – products of 
articulatory processes and another associated with long 
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pauses – associated with cognitive processes. Having 
successfully fitted this distribution it is possible to determine 
an optimal threshold value for each recording for 
differentiating between the short-pause component and long-
pause component.  As this threshold value can vary from 
speaker to speaker it is dynamic in nature.  

Recent studies by Rosen et al [19], and Hird & Kirsner 
[8] investigated the correlation between the pause 
distribution parameters and Friedrich’s ataxia (FRDA) and 
brain-damage induced aphasia respectively. Rosen et al [19] 
found a significant difference between the parameters for 
those with FRDA and control subjects and Hird & Kirsner 
[8] graphically demonstrated the variation between brain-
damaged subjects and control subjects. Given these findings 
and the findings of D’Arcy et al [6] and Roark et al [10] that 
pause-related features are correlated with cognitive function, 
there is clearly potential in using pause distribution 
parameters to discriminate between cognitively healthy and 
cognitively impaired subjects.  

This study readdresses the approach of D’Arcy et al [6], 
replacing the use of a static 250ms minimum pause duration 
with this dynamic threshold. The parameters of the pause and 
utterance distributions are furthermore assessed in their 
ability to discriminate between cognitively healthy and 
cognitively impaired speakers. 

II. METHODS 

A. Participants 

Recruited from St. James’s Hospital in Dublin as part of 
the Technology Research for Independent (TRIL) program, 
187 older adults participated in this study, 73 (39.04%) of 
whom were male and 114 (60.96%) female, with a mean age 
of 72.44 (SD 7.01, range 60 - 80) years. All participants 
underwent cognitive assessment using the MMSE, the scores 
ranging from 20 to 30 with a mean MMSE score of 27.68 
(SD 2.00). Based on their MMSE scores, the participants 
were segmented into two groups. With an MMSE score of 27 
or higher, 150 of the participants (80.21%) were classified as 
cognitively healthy, and 37, with a score of 26 or lower 
(19.79%), were classified as cognitively impaired. 

B. Audio Corpus 

The audio corpus used for this project consists of 187 
recordings of participants reading aloud. Recordings were 
made using 16-bit direct digital sampling at a sampling rate 
of 44.1 kHz. The recordings were saved in an uncompressed 
format. All recording were high-pass filtered at 80Hz to 
remove low frequency noise. 

C. Speech Task 

Each participant was required to read a short text passage 
from a children’s story. This passage has been used in 
previous studies by Rapcan et al [8][16], D’Arcy et al [6] 
and also by Stassen et al [15]. The text passage is considered 
to be emotionally neutral and to exhibit verbal and semantic 
simplicity [15].The text is relatively short with most 
recordings being between two and three minutes in length.  

D. Analysis 

1) Pause and Utterance Detection 
Pauses and utterance detection was performed employing 

three threshold values: minimum pause duration, minimum 
utterance duration, and minimum signal amplitude [11]. 
Breath detection and removal was implemented according to 
the algorithm described by Rapcan et al [20] prior to the 
application of these thresholds to prevent their 
misclassification as speech. 

 A minimum signal amplitude was calculated for each 
recording by performing full-wave rectification on the signal, 
and segmenting it into 50ms non-overlapping windows. 
Based on the empirical estimation made by Rapcan et al [16] 
that 15-20% of such windows can be classed as silence, a 
conservative 15% of the windows with the lowest energy 
were selected and the average value of the maximum 
amplitude in each window was determined – giving the 
minimum amplitude threshold.  This threshold was then used 
to perform the initial speech/non-speech segmentation with 
all portions of the signal exceeding the threshold classed as 
speech and all those below the threshold classed as non-
speech. 

 Following this initial segmentation temporal thresholds 
were applied to more accurately identify both pauses and 
utterances. Initial thresholds of 100ms for minimum 
utterance duration and 250ms for minimum pause duration 
were employed to provide the secondary segmentation of the 
signal into long utterances and pauses. Thresholds of 30ms 
and 20ms were then applied to the long utterances to break 
them into short utterances and pauses, providing the tertiary 
and final segmentation of the signal into speech and pauses. 
In this manner all pauses of duration greater than or equal to 
20ms and all utterances of duration greater than or equal to 
30ms were identified. 

2) Pause and Utterance Distributions 
Two-component mixed lognormal distributions were 

fitted to the pause duration data using maximum likelihood 
estimation (MLE). The two components of the distribution 
were termed the short-pause component and the long-pause 
component. The point at which the detection error was 
minimized for each component was found to be at the 
intersection of the two components. This intersection point 
was employed as the ‘dynamic’ pause threshold and was 
used to discriminate between the long-pauses, which were of 
interest and the short-pauses which were to be discarded. 
MLE was also employed to fit a unimodal lognormal 
distribution to utterance duration data for each recording.  

The following features were then extracted from the 
pause and utterance distributions: 

1.  Pause Mixing Proportion 
2.  Short-Pause Mean 
3.  Long-Pause Mean 
4.  Short-Pause Standard Deviation 
5.  Long-Pause Standard Deviation 
6.  Utterance Mean 
7.  Utterance Standard Deviation 
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3) Temporal Features 
Using both the dynamic pause duration threshold from 

the pause distribution, and the static 250ms threshold 
employed by D’Arcy et al [6], seven temporal features were 
extracted: 

1.  Number of Pauses 
2.  Mean Pause Duration 
3.  Mean Pause Duration per Second 
4.  Mean Utterance Duration 
5.  Total Length of Pause 
6.  Total Length of Utterances 
7.  Total Recording Time 

 
By employing both the static and dynamic thresholds it 

was possible to compare the performance of both thresholds 
in discriminating between cognitively healthy and 
cognitively impaired participants.  

4) Statistical analysis 
The performance of these features in discriminating 

between cognitively healthy (MMSE >=27) and cognitively 
impaired (MMSE<27) participants was assessed using a 
combination of Student’s t-Test, Welch’s t-Test and 
Wilcoxon’s Rank-Sum Test. The selection of the appropriate 
test for each feature was based on the results of normality 
tests, variance tests, and visual inspection of quantile-
quantile plots. The feature set under analysis comprised the 
parameters of the pause distributions and utterance 
distributions, and the temporal features for the static and 
dynamic thresholds. The features that emerged as statistically 
significant at a significance level of α = 0.05 were 
subsequently used in the classification procedure. 

5) Classification 
A Linear Discriminant Analysis (LDA) classifier [21] 

was chosen to differentiate between cognitively healthy and 
impaired groups. Cross-fold validation [22] was used to 
maximize training and determine classification accuracies. 

III. RESULTS 

 From the three sets of features (static temporal features, 
dynamic temporal features, and distribution features) the 
variance analysis yielded seven statistically significant 
features (see Table I and II). Inspection of the mean values 
of these features (see Table III) revealed that the participants 
of the cognitively impaired group generated more pauses for 
the static threshold case, with a mean of 28.76 seconds 
compared to 24.01 for the healthy group.  The ‘(Dynamic) 
Total Length of Pauses’ feature indicated that the impaired 
group paused on average 6.5 seconds more than the healthy 
group. Both static and dynamic ‘Total Length of Utterances’ 
demonstrated that the impaired group had longer utterances 
than the healthy group.  

TABLE I.  STUDENT’S T-TEST 

Speech Feature 
Student’s t-test 

t df p 

(Distribution) Utterance 

Mean 
2.4824 185 0.0139 

(Dynamic) Total Length of 

Utterances 
2.1258 185 0.0348 

(Static) Mean Pause 

Duration per Second 
-2.5708 185 0.0109 

(Static) Total Length of 

Utterances 
2.2888 185 0.0260 

Distribution – features extracted from lognormal distributions, Dynamic – temporal features extracted 

employing dynamically estimated pause threshold, Static – temporal features extracted employing 

static pause threshold 

TABLE II.  WILCOXON RANK-SUM TEST 

Speech Feature 
Rank-Sum Test 

U z p 

(Distribution) Pause Mixing 

Proportion 
3214 -2.0883 0.0368 

(Dynamic) Total Length of 

Pauses 
4488 2.0687 0.0386 

(Static) Number of Pauses 4514 2.1556 0.0311 

Distribution – features extracted from lognormal distributions, Dynamic – temporal features extracted 

employing dynamically estimated pause threshold, Static – temporal features extracted employing 

static pause threshold 

TABLE III.  MEAN FEATURE VALUES FOR BOTH PARTICIPANTS’ 

GROUPS 

Speech Feature 

Mean Feature Value 

Cognitively 

Healthy Group 

Cognitively 

Impaired Group 

(Distribution) Utterance Mean 

(ln(ms)) 
5.77 5.93 

(Distribution) Pause Mixing 

Proportion 
0.76 0.71 

(Static) Number of Pauses 24.01 28.76 

(Static) Mean Pause Duration 

per Second (s) 
0.13 0.15 

(Static) Total Length of 

Utterances (s) 
110.64 122.03 

(Dynamic) Total Length of 

Pauses (s) 
29.08 35.58 

(Dynamic) Total Length of 

Utterances (s) 
109.66 118.44 

Distribution – features extracted from lognormal distributions, Dynamic – temporal features extracted 

employing dynamically estimated pause threshold, Static – temporal features extracted employing 

static pause threshold 

 
Figure 1. Pause Mixed  Lognormal Distribution 
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TABLE IV.  LINEAR DISCRIMINANT ANALYSIS CLASSIFICATION 

Classification 

Performance 

Feature set 

(Static) 

Temporal 

Features 

(Dynamic) 

Temporal 

Features 

Distribution 

Features 

Overall Accuracy (%) 65.39 61.97 68.66 

Sensitivity (%) 63.98 58.25 64.20 

Specificity (%) 66.79 65.69 73.12 

ROC Area 0.69 0.58 0.74 

ROC Area – Area under the Receiver Operating Characteristics (ROC) curve 

 

Classification of the participants was then performed 
using these features, the results of which can be seen in 
Table IV. Employing the dynamic temporal features yielded 
decreases of 5.73% (to 58.25%) in the sensitivity, 1.10% 
(65.69%) in the specificity, and 3.42% (61.97%) in the 
accuracy when compared with the performance of the static 
temporal features. When the classifier was trained using the 
pause and utterance distribution features, the classification 
performance increased. The sensitivity of the LDA classifier 
increased by 0.22% (to 64.20%), specificity by 6.33% 
(73.12%) and the overall accuracy by 3.27% (68.66%). 

IV. DISCUSSION  

The results of this study reaffirm the potential present in 

speech analysis for assessing cognitive function of older 

subjects. From the investigation of pause and utterance 

duration distribution data and their impact on the 

performance of an LDA classifier, two distributional 

parameters, pause mixing proportion and utterance mean, 

were found to be statistically significant and encouragingly 

outperformed the temporal features in classifying the 

participants according to their level of cognitive function. 

Contrary to expectations however the use of a dynamic 

threshold derived from the distributional data had a negative 

impact on the classification performance of the temporal 

features. These findings would suggest that the distributional 

data are best employed directly, rather than using them to 

tailor the temporal features for each individual speaker via 

the dynamic thresholding.  

V. CONCLUSION 

Despite dynamic thresholding yielding no improvement on 

traditional methods, this study did highlight the potential in 

pause and utterance duration distribution parameters in 

classifying people according to their cognitive function. 

Because speech can be acquired remotely (e.g. via 

telephone) the results of the study also indicate that temporal 

speech analysis may help in the development of systems for 

the remote detection of cognitive decline. 
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