
  

Abstract—Indoor localization is one of the key topics in the 

area of wireless networks with increasing applications in 

assistive healthcare, where tracking the position and actions of 

the patient or elderly are required for medical observation or 

accident prevention. Most of the common indoor localization 

methods are based on estimating one or more location-

dependent signal parameters like TOA, AOA or RSS. However, 

some difficulties and challenges caused by the complex 

scenarios within a closed space significantly limit the 

applicability of those existing approaches in an indoor assistive 

environment, such as the well-known multipath effect. In this 

paper, we develop a new one-stage localization method based 

on spatial sparsity of the x-y plane. In this method, we directly 

estimate the location of the emitter without going through the 

intermediate stage of TOA or signal strength estimation. We 

evaluate the performance of the proposed method using Monte 

Carlo simulation. The results show that the proposed method is 

(i) very accurate even with a small number of sensors and (ii) 

very effective in addressing the multi-path issues. 

 
Index Terms— Time of Arrival (TOA), Received Signal 

Strength (RSS), Sparsity, Compressive Sensing (CS). 

 

I. INTRODUCTION 

Indoor localization has been a long-standing and 

important issue in the areas of signal processing and sensor 

networks that has raised increasing attention recently [1]-

[10]. As the number of elderly people grows rather quickly 

over the past few decades and continues to do so [11], it is 

imperative to seek alternative and innovative ways to 

provide affordable health care to the aging population [12]. 

A compelling solution is to enable pervasive healthcare for 

the elderly and people with disabilities in their own homes, 

while reducing the use and dependency of healthcare 

facilities. To this aim new technology and infrastructure 

must be developed for an in-home assistive living 

environment. One of the key demands in such an assistive 

environment is to promptly and accurately determine the 

state and activities of an inhabitant subject. The indoor 

localization provides an effective means in tracking the 

position, motions and reactions of a patient, the elderly or 

any person with special needs for medical observation or 

accident prevention.   

In assistive healthcare applications, the individual may 

wear a small device that could emit a radio frequency (RF) 

signal for localization. This emitter(s) propagates a signal 
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that could be received and captured by several pre-mounted 

wireless sensors located in known positions. The sensors can 

estimate the location of the emitter after sharing some data 

and performing some processing.  

The classic approach for localization is to first estimate 

one or more location-dependent signal parameters such as 

time-of-arrival (TOA), angle-of-arrival (AOA) or received-

signal-strength (RSS). Then in a second step, the collection 

of estimated parameters is used to determine an estimate of 

the emitter’s location. However, the systems based on AOA 

need multiple antennas or a scannable antenna that are 

usually costly [3]. The methods based on signal strength 

measurement (RSS) require a costly training procedure and 

complex matching algorithms, while the positioning 

accuracy of these methods is also limited by the large 

variance in indoor environments [4][10]. The methods based 

on time-of-arrival (TOA) are usually very accurate. 

However, the accuracy of the classic TOA based methods 

often suffers from massive multipath conditions in indoor 

localization, which is caused by the reflection and diffraction 

of the RF signal from objects (e.g., interior wall, doors or 

furniture) in the environment [1].  

In this paper, we exploit spatial sparsity of the emitter on 

the x-y plane and use the convex optimization theory to 

estimate the location of the emitter directly without going 

through the intermediate stage of TOA estimation. It is 

obvious that in emitter location problems, the number of 

emitters is much smaller than the number of all grid points in 

a fine grid on the x-y plane. Thus, by assigning a positive 

number to each one of the grid points containing an emitter 

and assigning zeros to the rest of the grid points, we will 

have a very sparse grid plane matrix that can be reformed as 

a sparse vector. In this context, a sparse vector is a vector 

containing only a small number of non-zero elements [13]. 

Since each element of this grid vector corresponds to one 

grid point in the x-y plane, we can estimate the location of 

emitters by extracting the position of non-zero elements of 

the sparsest vector that satisfies the delay relationship 

between transmitted signals and received signals.  

In principle, sparsity of the grid vector can be enforced 

by minimizing its ℓ0-norm which is defined as the number of 

non-zero elements in the vector. However, since the ℓ0-norm 

minimization is an NP-hard non-convex optimization 

problem, it is very common (e.g. in compressive sensing 

problems) to approximate it with ℓ1-norm minimization, 

which is a convex optimization problem and also achieves 

the sparse solution very well [13]. Thus, after formulating 

the problem in terms of the sparse grid vector, we can 

estimate this vector by pushing sparsity using ℓ1-norm 
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minimization on the grid vector, subject to the delay 

relationship between the signals transmitted from the grid 

point and the signals received by the sensors. 

In [14], the authors suggested a two-stage source 

localization method based on time-difference-of-arrival 

(TDOA) in a multipath channel exploiting the sparsity of the 

multipath channel for estimation of the line-of-sight 

component. In this method, the sensors don’t need to know 

the information on the specific transmitted symbols but, they 

require knowledge of the pulse shape of the transmitted 

signal. In [15], the authors suggested a compressive-sensing 

based distributed target localization. In this method, each 

sensor approximates the transmitted signal by its own 

received signal mapped to each one of the grid points. This 

idea helps to reduce the amount of data transmission in the 

sense of distributed localization but it lowers the quality of 

the estimation since each sensor estimates the transmitted 

signal just using its own received signal. Also, each sensor 

computes its own estimation of the emitter location that is 

not necessarily equal to other sensors’ estimations. However, 

in our method the signal will be estimated in the sensor 

network using all received signals for unknown signal cases 

to achieve more accurate results. 

Contrary to classic methods, in this paper we estimate the 

location of the emitter directly without going through the 

intermediate stage of TOA estimation. We will see that this 

method is very robust and effective in dealing with the 

multipath condition, which is a very serious problem in 

indoor localization due to the many reflections from 

furniture and walls.  

In Figure 1(a), we can see a typical apartment layout. 

Figure 1(b) shows the same apartment with four receiver 

sensors (i.e., red dots) mounted at the corners. Figure 1(c) 

illustrates a simple example for multipath scenario. In this 

figure, the solid (blue) lines present the direct paths and the 

dashed (red) lines indicate the reflected paths. However, 

given the extremely complex nature of the reflections within 

such a closed environment and the tremendous difference in 

the reflection rates for different building materials, it is 

impossible to conclude a rather perfect multi-path reflection 

model for the indoor circumstance. However, it is well 

agreed that the strength of reflected signals deteriorates after 

each reflection. Moreover, the TOA based localization 

systems usually suffer from first-order reflections since they 

generate the side-lobes very close to the main peak in the 

correlation stage used in traditional TOA based methods. 

Thus, the models like in figure 1(c) seem reasonable for the 

purpose of research. 

In our method, we don’t need any time synchronization 

between emitter and receivers since the method is implicitly 

based on time difference of arrival (TDOA) between 

receivers. 

The proposed localization method can also be 

implemented for three-dimensional model. In this approach, 

the height of the worn device (emitter) from the floor can be 

also estimated. Thus, the system can immediately detect if 

the patient falls on the floor because of unconsciousness or 

any other reason.  

We evaluate the performance of the proposed method by 

Monte Carlo computer simulations. The simulation results 

show the accurate and fast localization performance of this 

method even in multipath conditions, with low SNRs and 

with small number of sensors; this provides a significant 

advantage over TOA, RSS or other single-stage methods. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 1. (a) A typical apartment layout. (b) Four sensors mounted in the 

corners. (c) A simple case for multipath scenario. The solid line is direct 

path and dashed lines are reflected paths. 
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II. PROBLEM FORMULATION 

Suppose that an emitter transmits a signal and L sensors 

receive that signal. The complex baseband signal observed 

by the lth sensor is  

( ) ( ) ( )
l l l l

r t s t w t   
                

(1)
 

where ( )s t  is the transmitted signal, 
l

  is the complex path 

attenuation, 
l

  is the signal delay and ( )
l

w t is a white, zero 

mean, complex Gaussian noise. Assume that each sensor 

collects Ns signal samples at sampling frequency 1 /
s s

F T . 

Then we have 
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where 
l

r  is the vector containing Ns samples of the received 

signal by lth sensor, s  is Ns samples of the transmitted 

signal and Dl  is the time sample shift operator by 

( / )
l l s

n T  samples. We can write ln

l
D D where D  is 

an 
s s

N N
 

permutation matrix defined as 

[ ] 1 if 1
ij

i j  D  , 
0 , 1

[ ] 1
N 

D  and [ ] 0
ij
D otherwise. 

To simplify the notations, we assume that we are 

interested in estimating the location of the target in the two-

dimensional (x-y) plane. As mentioned above, it is easily 

possible to expand the localization problem to the three-

dimensional case. 

 Now, we assign a number 
,x y

z  to each one of the grid 

points (x,y). Assume that 
,x y

z is one for the grid points 

containing an emitter and zero for the rest of the grid points. 

Thus, the signal vector received by l
th

 sensor will be 

 

, , , , ,l x y l x y l x y l

x y

z  r D s w
 ,       

(3)
  

where 
, ,l x y

D is the time sample shift operator with respect to 

sensor l assuming that the emitter is located in the grid point 

(x,y) and the summations are over all grid points in the 

desired (x,y) range. Now, if we reform all of the grid points 

in a column vector and re-arrange the indices, we will have
  

, ,

1

.

N

l n l n l n l

n
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In assistive healthcare systems, we can easily assume that 

the transmitted signal s is known by the receiver sensors. 

However, in other applications when the signal is not known 

for receivers, we can consider the transmitted signal s as a 

deterministic unknown signal. Then, for each grid point, we 

estimate the transmitted signal using the Minimum Variance 

Unbiased estimator (MVU) as 

  
1

,

1

1
ˆ

L

n l n l
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(5) 

where ˆ
n

s is the MVU estimate for the transmitted signal 

from grid point n. We define the matrix 
n

Γ  as the delay 

operator with respect to  all L sensors, assuming that the 

received signal comes from the grid point n (there is an 

emitter at grid point n):  
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Then, we can define  , 1, 2, ...,
n

n Nθ as an 1
s

LN   

vector containing all signals received by all L sensors when 

the emitter is in grid point n as 

 

 ˆ
n n n
 θ Γ s

        
     (6) 

 

If we arrange all vectors 
n

θ  for n:1...N  as the columns of a 

matrix Θ  as  
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[ ... ]
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then we have 
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where r is the vector of all L received signals, z is the 

sparse vector of z-values assigned to each grid point and w  

is the noise. Now, we can solve our problem by forming a 

BPIC (Basis Pursuit with Inequality Constraints) problem 

[16] [17] as following:  

 

1

2

ˆ arg m in

.s t 

 


  

z z

Θ z r
         (9) 

 

or regularized BPDN (Basis Pursuit Denoising) problem 

[16] [17] as: 

 

2 1
ˆ arg m in    z Θ z r z     (10)

   

where .
p  

is the ℓp-norm defined as 
p

p

ip i
v v 

 
,    

is an appropriately chosen bound on the noise magnitude and 

  is the regularization parameter balancing the sparsity 

versus estimation cost. 
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III. SIMULATION RESULTS 

We examined the performance of the proposed method 

using Monte Carlo computer simulation with 500 runs each 

time for various numbers of sensors (from 3 to 8 sensors). 

We simulated the massive multipath conditions in a typical 

apartment shown in Figure 1(a). The sensors are mounted at 

x-y locations (0,0) , (0,10) , (10,0) , (10,10) , (0,4) , (4,10) , 

(10,6) , (6,0) respectively and the location of the target has 

been chosen randomly. In this simulation, we used a BPSK 

signal with carrier frequency of 1 GHz. The sampling 

frequency is 200 MHz and the number of samples is equal to 

256. We run this simulation one time for SNR = 0dB and 

another time for SNR = 10dB. 

Figure 2 shows the RMS Error vs. number of sensors for 

estimating the location of the target in ( , )x y  plane. As we 

expected, the accuracy gets better by increasing the number 

of the receiving sensors. However, the results also 

demonstrate that the proposed method has very good 

performance even for small number of sensors (3 sensors). 

This finding enables the possibility of using small number of 

sensors to reduce the complexity and expenses of the 

system.  

Furthermore, the system works very well in the presence 

of multipath reflections and in noisy environments with low 

SNRs. It implies that, even with low transmitted power (to 

keep the worn device small with long battery life), we can 

still achieve a high localization accuracy. 

IV. CONCLUSION 

The indoor localization is a very beneficial tool in 

assistive healthcare environment when tracking the 

locations, behaviors and reactions of the patient is required 

for medical observation, symptoms identification or accident 

prevention.  Existing methods are susceptible to 

performance degradation due to the likely occurrence of 

multipath reflections in an indoor setting. 

To combat the degradation due to multipath, we 

developed a one-stage localization method based on spatial 

sparsity of the target(s) in the grid plane. In this method, we 

assign a non-zero number to each one of the grid points 

containing an emitter (target) and zeros to the rest of the grid 

points. Thus, the vector formed from these numbers will be a 

sparse unknown vector that we aim to estimate. Since each 

element of this vector corresponds to one grid point in the 

grid plane, we can estimate the location of emitters by 

extracting the positions of non-zero elements of the sparsest 

vector that satisfy the delay relationship between transmitted 

signals and received signals. We evaluated the performance 

of the proposed method using Monte-Carlo simulation. The 

simulation results show that the proposed method has very 

good performance even with small number of sensors and 

for low SNRs. The results also indicate that, in contrary to 

the classic TOA based methods, the proposed approach is a 

very effective and robust tool to deal with multipath issues. 

 

 

 
    (a) 

 
                           (b) 

Figure (2): RMS Error for X and Y (meter) versus Number of sensors. 
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