
  

  

Abstract— In this paper, we evaluate the overall 

performance of various magnetic-sensor signal processing 

(mSSP) algorithms for the Tongue Drive System based on a 

comprehensive dataset collected from trials with a total of eight 

able-bodied subjects. More specifically, we measure the 

performance of nine classifiers on the two-stage classification 

used by the mSSP algorithm, in order to learn how to improve 

the current algorithm. Results show that is it possible to reduce 

misclassification error from 5.95% and 20.13% to 3.98% and 

5.63%, from the two assessed datasets, respectively, without 

sacrificing correctness. Furthermore, since the mSSP algorithm 

must run in real time, the results show where to focus the 

computational resources when they are constrained by the 

platforms with limited resources, such as smartphones.  

I. INTRODUCTION 

In the United States alone there are an estimated 259,000 
persons with some type of spinal cord injury (SCI), with 
approximately 12,000 new cases added every year. Within 
this population, 47% are quadriplegics who cannot benefit 
from the standard input devices that able-bodied and lower 
body paraplegics can use to access computers, and interact 
with the environment. Over the years, the average age post-
injury has increased from 32 years to 40 years, and currently 
the life expectancy for quadriplegics ranges to around their 
sixties. This can be translated into approximately twenty 
years of medical support that average ~$800,000 for the first 
year, and ~$143,500 for each subsequent year [1]. 

To significantly reduce this billion dollar annual cost and 
improve the quality of life for these individuals, assistive 
technologies (AT) for people with SCI aim to allow them as 
much independence as possible, thus reducing the need for 
constant care. Although many ATs have been developed for 
people with different types of motor impairments, these 
solutions have mostly been user-specific and focus on the 
limited abilities of the individual, not to mention their limited 
number of switch-based commands. For instance, the popular 
sip-and-puff system offers only four discrete commands. 

By developing the Tongue Drive Systems (TDS) we aim 
to reduce the healthcare costs by giving the people with SCI 
more independence via a universal solution [2]. TDS gives its 
users access to their environments, powered wheelchairs 
(PWC), computers, and smartphones by using their tongues 
as an input device. The tongue has been known to have rich 

 
This work was supported in part by the National Institute of Biomedical 

Imaging and Bioengineering grant 1RC1EB010915, the National Science 
Foundation awards CBET-0828882 and IIS-0803184, and the National 
GEM Consortium Fellowship, sponsored by IBM. 

Abner Ayala-Acevedo and Maysam Ghovanloo are with the GT-Bionics 
Lab, School of Electrical and Computer Engineering at the Georgia Institute 
of Technology, Atlanta GA, USA (Email: abner.ayala@gatech.edu, 
mgh@gatech.edu). 

motor and sensory capabilities that can match the fingers of 
our hands. Moreover, it does not fatigue easily [3], [4].  

The current external TDS (eTDS) uses four 3-axis 
magneto-resistive sensors in the form of a wireless headset, 
and read the movements of a magnetic tracer attached to the 
tongue, ~1 cm posterior to the tip [5]. Currently, the eTDS is 
able to provide up to six individual tongue commands plus a 
neutral command, which is the tongue resting position. At the 
core of this system we have the magnetic sensor signal 
processing (mSSP) algorithm, which translates the tongue 
movements into issued commands. The mSSP algorithm has 
evolved through the years and now uses raw data from four 
3-axial magnetic sensors, mounted bilaterally near the users’ 
cheeks. Multiple data fusion, feature extraction, and 
classification schemes have constantly improved the overall 
performance of the TDS [5].  

In this paper we assess the performance of the current 
mSSP algorithm in order to identify its weaknesses and 
further improve the human-computer interaction (HCI) via 
tongue motion. In the following section we have detailed the 
current mSSP, the experimental dataset, and the basis of our 
evaluation. Section III describes the results of the mSSP 
performance assessment. Finally, we discuss potential 
improvements to the current mSSP algorithm. 

II. METHODOLOGY 

A. Magnetic Sensor Signal Processing Algorithm 

In order to cancel the external magnetic interference 
(EMI), including the earth’s magnetic field, the mSSP 
algorithm first calibrates the sensors and reduces the EMI by 
applying a stereo-differential noise cancellation method, 
discussed in [2]. After calibrating the raw sensors data, it uses 
a two-stage classification. The first stage of the mSSP 
algorithm simply distinguishes whether the tongue is on the 
left or right side of the mouth. This is accomplished by 
comparing the root mean square (RMS) amplitudes of the 
readings from the left vs. right magnetic sensors. The second 
stage of the classifier uses a simple majority voting scheme 
between nine distance-based classifiers that are listed in the 
following, without setting any majority threshold. It is also 
important to mention that the current mSSP uses PCA feature 
extraction of three consecutive incoming set of samples to 
reduce the dimensionality of the data.  

B. Classifiers 

1) Linear: multivariate normal distribution of data, with an 
estimated covariance matrix that is identical for each class. 
2) Diagonal Linear: similar to the linear classifier, with the 
exception that it calculates an estimate of the diagonal 
covariance matrix. 
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3) Quadratic: multivariate normal distribution of data, but 
unlike linear classifier, it estimates a different covariance 
matrix for each class. 
4) Diagonal Quadratic: similar to the quadratic classifier, 
except that it utilizes the diagonal covariance matrix 
estimate. 
5) Mahalanobis: similar to quadratic classifier, except that 
it assumes Gaussian distribution and utilizes Mahalanobis 
distance to calculate the covariance matrix. 
6) KNN Euclidean: k-nearest neighbor (KNN) classifier 
that utilizes Euclidean distance. 
7) KNN City Block: KNN classifier that calculates absolute 
value distance. 
8) KNN Cosine: KNN classifier that measures the angle 
between the points.  
9) KNN Correlation: KNN classifier that utilizes 
correlation distance. 

C. Classifiers Combinations 

1) Stacking: using multiple classifier stages, where the 
output of a preceding classifier becomes the input for the 
succeeding classifier, and making the final decision on the 
last stage [6]. In this method, since correct classification of 
the succeeding level is entirely dependent on the correctness 
of the preceding level(s), the earlier classifications must be 
quite reliable in order not to introduce errors, which would 
then propagate throughout the following stages and change 
the final decision.  

2) Majority Voting: the final decision is made based on the 
class that receives majority of the votes among classifiers. 
Results in [7] showed that this scheme was the most robust 
one by achieving lower misclassification error at the cost of 
a slight reduction in correct classification. 

D. Correctness, Misclassification, and Rejection 

To assess the performance of the mSSP algorithm and the 
majority voting scheme, we should distinguish between 
correctness, misclassification error, and rejection error. 

1) Rejection Error: this error occurs when there is a tie on 
majority voting scheme or when the final voted class does 
not reach the majority voting threshold. In this case, the 
mSSP classifies the incoming command as resting/neutral.  

2) Misclassification Error: this error occurs when a wrong 
class achieves the majority of classifier votes, and a wrong 
command (i.e. not intended by the TDS user) ensues. These 
misclassification errors are considered false negatives. It 
should be noted that the individual classifier outputs (0 to 6) 
are either right or wrong, but not “rejection”. 

3) Correctness: correctly classified commands. 

E. Dataset 

In order to assess the performance of the current mSSP 
algorithm, we have analyzed the collected data from human 
subject trials with eight able-bodied volunteers at the 
Northwestern University (NUB) and Georgia Institute of 
Technology (GTB). Details of the TDS trials with this group 
of subjects, who have been referred to as “Group-B”, can be 
found in our prior publication [8].  

 

Each of the eight participants took part in five sessions, 
accounting for a total of 40 experiments that were analyzed. 
The data used in this paper was taken from the Information 
Transfer Rate (ITR) test, in which participants were cued to 
issue a randomly selected command as fast and accurately as 
possible [8]. It should be noted that during this test no resting 
commands was requested. Therefore, we do not consider the 
issuance of the resting as a correct command. 

III. EXPERIMENTAL RESULTS 

Figs. 1a and 1b show the recommended tongue positions 
for six TDS commands and a sample of the resulting 
waveforms from magnetic sensors for each command (raw 
data), respectively. Following training, the mSSP is tasked 
with processing the raw data, sampled at 50 Hz, in real time 
and identify the TDS command that is intended by the user. 
All experiments, except for A. Left vs. Right Classification, 
use a majority voting scheme for their evaluation. 

A. First Stage: Left vs. Right Classification 

The first stage of the classifier identifies whether the 
tongue is on the left or right side of the mouth [5]. Identifying 
the tongue resting position (the neutral command) in the 
midline is postponed to the second stage. The results obtained 
in Fig. 2 shows that the current algorithm, which only uses 
RMS distance for left vs. right classification, has introduced a 
significant amount of error in the first stage, i.e. 2.02% and 
20.1% for GTB and NUB, respectively, which has 
consequently affected the overall accuracy of the mSSP.  

On the other hand, we observed that if the majority voting 
method among the nine classifiers used in the 2nd stage were 
also used in the first stage, this error would have significantly 
dropped to 0.13% and 1.6% for GTB and NUB, respectively. 
On the down side, this would have almost doubled the 
computational cost. However, it can also be seen in Fig. 2 
that using a simple quadratic classifier can lead to 
classification accuracy close to the majority voting scheme 
(0.13% for GTB and 2.13% for NUB). Also note the poor 
performance of both linear and diagonal linear distance 
classifiers.  

B. Second Stage: TDS Command Classification 

This stage uses the majority voting of all nine classifiers 
to make the final class assignment. However, since we have 
already identified whether the tongue is on the left or right 
side of the mouth in the first stage, the classification will only 
be between the three commands that are on that side of the 

  
             (a)                   (b) 

Figure 1. (a) Recommended tongue positions for six TDS commands plus 
the tongue resting position, which is considered neutral [8]. (b) Sample 

magnetic sensors waveforms from each command (raw data). 
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mouth (see Fig. 1a), plus the neutral command which will be 
classified on either side, i.e. one out of four classes. 

Results in Fig. 4 show that the majority voting does 
represent the lowest misclassification error with 3.98% and 
5.63% for GTB and NUB, respectively. Among the nine 
classifiers, KNN City Block was the best on average. 
However, it was not consistently the best classifier for every 
experiment, and its overall performance was considerably 
worse that the majority voting results. 

C. Majority Voting Threshold 

Here we intend to determine the optimal threshold for the 
majority voting scheme, i.e. what minimum percentage of the 
classifiers should vote for a class for it to be selected as the 
final decision. The higher the voting threshold, the higher the 
accuracy of the selected command (lower misclassification 
error), but also the higher would be the rejection error rate. A 
trade-off between correctness and robustness of the system 
has to be made, to optimally choose a majority voting 
threshold. We consider the TDS more robust if we lower the 
number of misclassification errors, even if it leads to 
classifying some of the issued commands as neutral.  

In order to identify the optimal voting threshold, one 
should also consider the task being accomplished. For 
instance, when driving a wheelchair, issuance of a wrong 
command, e.g. turning left instead of right, can have dire 
consequences. Therefore, we need a very robust mSSP 
algorithm. In other words, it is better to ignore a questionable 
command, and have the user try it again than making a wrong 
decision. On the other hand, when surfing the web, the user 
may want the TDS to be very responsive, while making a 
wrong choice would not be very costly.  

In Fig. 3, we have shown the effect of voting threshold on 

the two types of error and correctly selected commands. As 
mentioned above, this threshold can be adjustable, depending 
on the task. When driving a PWC, where safety is paramount, 
misclassification error can be reduced by choosing 100% 
threshold. Meaning that all classifiers should agree on the 
final command. Misclassification in this case was only 0.04% 
and 0.57% for GTB and NUB, respectively, at the cost of 
decreasing the rate of correctly selected commands to 74.7% 
and 75.6%, respectively. On the other hand, when we sat no 
voting threshold, correctness increased to 95% and 92% for 
GTB and NUB, respectively, at the cost of 4.58% and 6.23% 
misclassification, respectively. Fig. 4 shows the rate of 
misclassification for different classifiers. 

D. PCA vs. Raw Data 

We observed considerable variability between raw data 
associated with specific commands issued by each subject 
between different experiments, while the variability of the 
raw data within each experiment was quite low. This could 
be attributed to the positioning of the TDS headset and re-
calibration, which was done at the beginning of each session, 
but rarely within the session (unless the headset shifted) [8].  

This finding raised the question of whether there is a need 
for the principal component analysis (PCA), while applying 
the stereo-differential noise cancelation readily reduces the 
dimensionality of the raw data by half (from 12 to 6). Fig. 5 
shows that in fact there is no need for applying the PCA 
feature extraction scheme, especially when it does not have a 
significant impact on lowering the computational load. 

E. Number of Samples per Command 

The current algorithm utilizes 40 middle samples 
collected per command during training to construct each 

 
Figure 4.  Second stage classifiers’ rate of misclassification. Majority 

voting is reported at 50% threshold. 

 
Figure 2.  First stage (left vs. right) classification performance. 

 
Figure 5.  The mSSP performance with and without PCA. 

 
Figure 3.  Majority voting results with various threshold levels.  
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class. However, because the KNN classifiers require all data 
points to be saved, this translates to more required memory 
and higher computational burden. These are not suitable for a 
future version of the mSSP, which is going to be embedded 
within the headset. Therefore, we evaluated the effect of 
reducing the number of samples that we collect and associate 
to each class during the training phase. 

Fig. 6 shows that because of the low variability in raw 
data points within each experiment, representing the data 
points for each class with only 4 training samples result in 
about the same accuracy as 40 samples in the current mSSP, 
while still providing sufficient redundancy in the system. 
This can also lead to a faster training in our enhanced mSSP. 

F. Number of Repetitions per Command 

In another test we studied the relationship between the 
numbers of repetitions required per command during training 
and the overall mSSP accuracy. As expected, Fig. 7 shows 
that as we decrease the number of repetitions per command, 
there is a reduction in the mSSP accuracy. However, this 
experiment shows that the amount of loss in accuracy from 5 
to 10 repetitions is small. Therefore, as the TDS users 
become more familiar with the system, the training phase can 
be shortened without major negative consequences. 

IV. DISCUSSION 

The results obtained, show that simple distance based 
classifiers, such as the quadratic classifier and Mahalanobis, 
perform well under conditions where the distances between 
classes are large and well defined. When the distances are 
short, the KNNs classifiers offer a better solution.  

By using a two-stage classification we reduce the number 

of classes in the second stage classes by half, reducing the 
computational load if compared to older versions of the 
mSSP. Alternatively the number of individual commands can 
be increased in the future with comparable performance. 

By applying an adjustable task-based threshold on the 
majority voting scheme we can tune the system robustness 
and responsiveness for the optimal TDS user experience.  

We should point out that in the ITR test subjects are not 
requested to issue the resting commands. Hence, the 
presented results might be slightly different from the exact 
measurements of the current mSSP and system accuracy.  

V. CONCLUSION 

Quantitative assessment of the current mSSP clearly 
shows the key areas where we can improve the current mSSP 
algorithm, and where the limited computational resources of 
the system should be focused. We can understand the effects 
of applying new constraints or simplifying an algorithm on 
the overall performance of the TDS using real field data. Fig. 
8 shows the impact of applying some of these conclusions to 
the current mSSP algorithm, resulting in an improvement 
from 5.95% and 20.13% to a 3.98% and 5.63% for GTB and 
NUB subjects in misclassification errors, respectively.  
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Figure 7.  The effects of number of repetitions per command in the 

training phase. 

 
Figure 8.  Improved mSSP algorithm vs. current mSSP algorithm. 

 
Figure 6.  The effect of number of samples maintained per command 

to construct each class during training. 
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