

Abstract— In this paper, we evaluate the overall

performance of various magnetic-sensor signal processing

(mSSP) algorithms for the Tongue Drive System based on a

comprehensive dataset collected from trials with a total of eight

able-bodied subjects. More specifically, we measure the

performance of nine classifiers on the two-stage classification

used by the mSSP algorithm, in order to learn how to improve

the current algorithm. Results show that is it possible to reduce

misclassification error from 5.95% and 20.13% to 3.98% and

5.63%, from the two assessed datasets, respectively, without

sacrificing correctness. Furthermore, since the mSSP algorithm

must run in real time, the results show where to focus the

computational resources when they are constrained by the

platforms with limited resources, such as smartphones.

I. INTRODUCTION

In the United States alone there are an estimated 259,000
persons with some type of spinal cord injury (SCI), with
approximately 12,000 new cases added every year. Within
this population, 47% are quadriplegics who cannot benefit
from the standard input devices that able-bodied and lower
body paraplegics can use to access computers, and interact
with the environment. Over the years, the average age post-
injury has increased from 32 years to 40 years, and currently
the life expectancy for quadriplegics ranges to around their
sixties. This can be translated into approximately twenty
years of medical support that average ~$800,000 for the first
year, and ~$143,500 for each subsequent year [1].

To significantly reduce this billion dollar annual cost and
improve the quality of life for these individuals, assistive
technologies (AT) for people with SCI aim to allow them as
much independence as possible, thus reducing the need for
constant care. Although many ATs have been developed for
people with different types of motor impairments, these
solutions have mostly been user-specific and focus on the
limited abilities of the individual, not to mention their limited
number of switch-based commands. For instance, the popular
sip-and-puff system offers only four discrete commands.

By developing the Tongue Drive Systems (TDS) we aim
to reduce the healthcare costs by giving the people with SCI
more independence via a universal solution [2]. TDS gives its
users access to their environments, powered wheelchairs
(PWC), computers, and smartphones by using their tongues
as an input device. The tongue has been known to have rich

This work was supported in part by the National Institute of Biomedical

Imaging and Bioengineering grant 1RC1EB010915, the National Science
Foundation awards CBET-0828882 and IIS-0803184, and the National
GEM Consortium Fellowship, sponsored by IBM.

Abner Ayala-Acevedo and Maysam Ghovanloo are with the GT-Bionics
Lab, School of Electrical and Computer Engineering at the Georgia Institute
of Technology, Atlanta GA, USA (Email: abner.ayala@gatech.edu,
mgh@gatech.edu).

motor and sensory capabilities that can match the fingers of
our hands. Moreover, it does not fatigue easily [3], [4].

The current external TDS (eTDS) uses four 3-axis
magneto-resistive sensors in the form of a wireless headset,
and read the movements of a magnetic tracer attached to the
tongue, ~1 cm posterior to the tip [5]. Currently, the eTDS is
able to provide up to six individual tongue commands plus a
neutral command, which is the tongue resting position. At the
core of this system we have the magnetic sensor signal
processing (mSSP) algorithm, which translates the tongue
movements into issued commands. The mSSP algorithm has
evolved through the years and now uses raw data from four
3-axial magnetic sensors, mounted bilaterally near the users’
cheeks. Multiple data fusion, feature extraction, and
classification schemes have constantly improved the overall
performance of the TDS [5].

In this paper we assess the performance of the current
mSSP algorithm in order to identify its weaknesses and
further improve the human-computer interaction (HCI) via
tongue motion. In the following section we have detailed the
current mSSP, the experimental dataset, and the basis of our
evaluation. Section III describes the results of the mSSP
performance assessment. Finally, we discuss potential
improvements to the current mSSP algorithm.

II. METHODOLOGY

A. Magnetic Sensor Signal Processing Algorithm

In order to cancel the external magnetic interference
(EMI), including the earth’s magnetic field, the mSSP
algorithm first calibrates the sensors and reduces the EMI by
applying a stereo-differential noise cancellation method,
discussed in [2]. After calibrating the raw sensors data, it uses
a two-stage classification. The first stage of the mSSP
algorithm simply distinguishes whether the tongue is on the
left or right side of the mouth. This is accomplished by
comparing the root mean square (RMS) amplitudes of the
readings from the left vs. right magnetic sensors. The second
stage of the classifier uses a simple majority voting scheme
between nine distance-based classifiers that are listed in the
following, without setting any majority threshold. It is also
important to mention that the current mSSP uses PCA feature
extraction of three consecutive incoming set of samples to
reduce the dimensionality of the data.

B. Classifiers

1) Linear: multivariate normal distribution of data, with an
estimated covariance matrix that is identical for each class.
2) Diagonal Linear: similar to the linear classifier, with the
exception that it calculates an estimate of the diagonal
covariance matrix.

Quantitative Assessment of Magnetic Sensor Signal Processing

Algorithms in a Wireless Tongue-Operated Assistive Technology

Abner Ayala-Acevedo and Maysam Ghovanloo, Senior Member, IEEE

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

3692978-1-4577-1787-1/12/$26.00 ©2012 IEEE

3) Quadratic: multivariate normal distribution of data, but
unlike linear classifier, it estimates a different covariance
matrix for each class.
4) Diagonal Quadratic: similar to the quadratic classifier,
except that it utilizes the diagonal covariance matrix
estimate.
5) Mahalanobis: similar to quadratic classifier, except that
it assumes Gaussian distribution and utilizes Mahalanobis
distance to calculate the covariance matrix.
6) KNN Euclidean: k-nearest neighbor (KNN) classifier
that utilizes Euclidean distance.
7) KNN City Block: KNN classifier that calculates absolute
value distance.
8) KNN Cosine: KNN classifier that measures the angle
between the points.
9) KNN Correlation: KNN classifier that utilizes
correlation distance.

C. Classifiers Combinations

1) Stacking: using multiple classifier stages, where the
output of a preceding classifier becomes the input for the
succeeding classifier, and making the final decision on the
last stage [6]. In this method, since correct classification of
the succeeding level is entirely dependent on the correctness
of the preceding level(s), the earlier classifications must be
quite reliable in order not to introduce errors, which would
then propagate throughout the following stages and change
the final decision.

2) Majority Voting: the final decision is made based on the
class that receives majority of the votes among classifiers.
Results in [7] showed that this scheme was the most robust
one by achieving lower misclassification error at the cost of
a slight reduction in correct classification.

D. Correctness, Misclassification, and Rejection

To assess the performance of the mSSP algorithm and the
majority voting scheme, we should distinguish between
correctness, misclassification error, and rejection error.

1) Rejection Error: this error occurs when there is a tie on
majority voting scheme or when the final voted class does
not reach the majority voting threshold. In this case, the
mSSP classifies the incoming command as resting/neutral.

2) Misclassification Error: this error occurs when a wrong
class achieves the majority of classifier votes, and a wrong
command (i.e. not intended by the TDS user) ensues. These
misclassification errors are considered false negatives. It
should be noted that the individual classifier outputs (0 to 6)
are either right or wrong, but not “rejection”.

3) Correctness: correctly classified commands.

E. Dataset

In order to assess the performance of the current mSSP
algorithm, we have analyzed the collected data from human
subject trials with eight able-bodied volunteers at the
Northwestern University (NUB) and Georgia Institute of
Technology (GTB). Details of the TDS trials with this group
of subjects, who have been referred to as “Group-B”, can be
found in our prior publication [8].

Each of the eight participants took part in five sessions,
accounting for a total of 40 experiments that were analyzed.
The data used in this paper was taken from the Information
Transfer Rate (ITR) test, in which participants were cued to
issue a randomly selected command as fast and accurately as
possible [8]. It should be noted that during this test no resting
commands was requested. Therefore, we do not consider the
issuance of the resting as a correct command.

III. EXPERIMENTAL RESULTS

Figs. 1a and 1b show the recommended tongue positions
for six TDS commands and a sample of the resulting
waveforms from magnetic sensors for each command (raw
data), respectively. Following training, the mSSP is tasked
with processing the raw data, sampled at 50 Hz, in real time
and identify the TDS command that is intended by the user.
All experiments, except for A. Left vs. Right Classification,
use a majority voting scheme for their evaluation.

A. First Stage: Left vs. Right Classification

The first stage of the classifier identifies whether the
tongue is on the left or right side of the mouth [5]. Identifying
the tongue resting position (the neutral command) in the
midline is postponed to the second stage. The results obtained
in Fig. 2 shows that the current algorithm, which only uses
RMS distance for left vs. right classification, has introduced a
significant amount of error in the first stage, i.e. 2.02% and
20.1% for GTB and NUB, respectively, which has
consequently affected the overall accuracy of the mSSP.

On the other hand, we observed that if the majority voting
method among the nine classifiers used in the 2nd stage were
also used in the first stage, this error would have significantly
dropped to 0.13% and 1.6% for GTB and NUB, respectively.
On the down side, this would have almost doubled the
computational cost. However, it can also be seen in Fig. 2
that using a simple quadratic classifier can lead to
classification accuracy close to the majority voting scheme
(0.13% for GTB and 2.13% for NUB). Also note the poor
performance of both linear and diagonal linear distance
classifiers.

B. Second Stage: TDS Command Classification

This stage uses the majority voting of all nine classifiers
to make the final class assignment. However, since we have
already identified whether the tongue is on the left or right
side of the mouth in the first stage, the classification will only
be between the three commands that are on that side of the

 (a) (b)

Figure 1. (a) Recommended tongue positions for six TDS commands plus
the tongue resting position, which is considered neutral [8]. (b) Sample

magnetic sensors waveforms from each command (raw data).

3693

mouth (see Fig. 1a), plus the neutral command which will be
classified on either side, i.e. one out of four classes.

Results in Fig. 4 show that the majority voting does
represent the lowest misclassification error with 3.98% and
5.63% for GTB and NUB, respectively. Among the nine
classifiers, KNN City Block was the best on average.
However, it was not consistently the best classifier for every
experiment, and its overall performance was considerably
worse that the majority voting results.

C. Majority Voting Threshold

Here we intend to determine the optimal threshold for the
majority voting scheme, i.e. what minimum percentage of the
classifiers should vote for a class for it to be selected as the
final decision. The higher the voting threshold, the higher the
accuracy of the selected command (lower misclassification
error), but also the higher would be the rejection error rate. A
trade-off between correctness and robustness of the system
has to be made, to optimally choose a majority voting
threshold. We consider the TDS more robust if we lower the
number of misclassification errors, even if it leads to
classifying some of the issued commands as neutral.

In order to identify the optimal voting threshold, one
should also consider the task being accomplished. For
instance, when driving a wheelchair, issuance of a wrong
command, e.g. turning left instead of right, can have dire
consequences. Therefore, we need a very robust mSSP
algorithm. In other words, it is better to ignore a questionable
command, and have the user try it again than making a wrong
decision. On the other hand, when surfing the web, the user
may want the TDS to be very responsive, while making a
wrong choice would not be very costly.

In Fig. 3, we have shown the effect of voting threshold on

the two types of error and correctly selected commands. As
mentioned above, this threshold can be adjustable, depending
on the task. When driving a PWC, where safety is paramount,
misclassification error can be reduced by choosing 100%
threshold. Meaning that all classifiers should agree on the
final command. Misclassification in this case was only 0.04%
and 0.57% for GTB and NUB, respectively, at the cost of
decreasing the rate of correctly selected commands to 74.7%
and 75.6%, respectively. On the other hand, when we sat no
voting threshold, correctness increased to 95% and 92% for
GTB and NUB, respectively, at the cost of 4.58% and 6.23%
misclassification, respectively. Fig. 4 shows the rate of
misclassification for different classifiers.

D. PCA vs. Raw Data

We observed considerable variability between raw data
associated with specific commands issued by each subject
between different experiments, while the variability of the
raw data within each experiment was quite low. This could
be attributed to the positioning of the TDS headset and re-
calibration, which was done at the beginning of each session,
but rarely within the session (unless the headset shifted) [8].

This finding raised the question of whether there is a need
for the principal component analysis (PCA), while applying
the stereo-differential noise cancelation readily reduces the
dimensionality of the raw data by half (from 12 to 6). Fig. 5
shows that in fact there is no need for applying the PCA
feature extraction scheme, especially when it does not have a
significant impact on lowering the computational load.

E. Number of Samples per Command

The current algorithm utilizes 40 middle samples
collected per command during training to construct each

Figure 4. Second stage classifiers’ rate of misclassification. Majority

voting is reported at 50% threshold.

Figure 2. First stage (left vs. right) classification performance.

Figure 5. The mSSP performance with and without PCA.

Figure 3. Majority voting results with various threshold levels.

3694

class. However, because the KNN classifiers require all data
points to be saved, this translates to more required memory
and higher computational burden. These are not suitable for a
future version of the mSSP, which is going to be embedded
within the headset. Therefore, we evaluated the effect of
reducing the number of samples that we collect and associate
to each class during the training phase.

Fig. 6 shows that because of the low variability in raw
data points within each experiment, representing the data
points for each class with only 4 training samples result in
about the same accuracy as 40 samples in the current mSSP,
while still providing sufficient redundancy in the system.
This can also lead to a faster training in our enhanced mSSP.

F. Number of Repetitions per Command

In another test we studied the relationship between the
numbers of repetitions required per command during training
and the overall mSSP accuracy. As expected, Fig. 7 shows
that as we decrease the number of repetitions per command,
there is a reduction in the mSSP accuracy. However, this
experiment shows that the amount of loss in accuracy from 5
to 10 repetitions is small. Therefore, as the TDS users
become more familiar with the system, the training phase can
be shortened without major negative consequences.

IV. DISCUSSION

The results obtained, show that simple distance based
classifiers, such as the quadratic classifier and Mahalanobis,
perform well under conditions where the distances between
classes are large and well defined. When the distances are
short, the KNNs classifiers offer a better solution.

By using a two-stage classification we reduce the number

of classes in the second stage classes by half, reducing the
computational load if compared to older versions of the
mSSP. Alternatively the number of individual commands can
be increased in the future with comparable performance.

By applying an adjustable task-based threshold on the
majority voting scheme we can tune the system robustness
and responsiveness for the optimal TDS user experience.

We should point out that in the ITR test subjects are not
requested to issue the resting commands. Hence, the
presented results might be slightly different from the exact
measurements of the current mSSP and system accuracy.

V. CONCLUSION

Quantitative assessment of the current mSSP clearly
shows the key areas where we can improve the current mSSP
algorithm, and where the limited computational resources of
the system should be focused. We can understand the effects
of applying new constraints or simplifying an algorithm on
the overall performance of the TDS using real field data. Fig.
8 shows the impact of applying some of these conclusions to
the current mSSP algorithm, resulting in an improvement
from 5.95% and 20.13% to a 3.98% and 5.63% for GTB and
NUB subjects in misclassification errors, respectively.

REFERENCES

[1] National Spinal Cord Injury Statistical Center, “Spinal Cord Injuries
Facts & Figures at Glance,” 2009, [Online], Available:
https://www.nscisc.uab.edu/public_content/facts_figures_2009.aspx

[2] X. Huo, J. Wang, and M. Ghovanloo, “A magneto-inductive sensor
based wireless tongue-computer interface,” IEEE Trans. on Neural
Sys. Rehab. Eng., vol. 16, no. 5, pp. 497-504, Oct. 2008.

[3] R.G. Oliver, and S.P. Evans, “Tongue size, oral cavity size, and
speech,” The Angle Orthodontist, pp. 234-243, 1986.

[4] E.R. Kandel, J.H. Schwartz, and T.M. Jessell, Principles of Neural
Science, 4th ed., New York: McGraw-Hill, 2000.

[5] E.B. Sadeghian, X. Huo, and M. Ghovanloo, “Command detection
and classification in tongue drive assistive technology,” Proc. IEEE
33rd Eng. in Med. Biol. Conf., pp. 5465-5468, Sep. 2011.

[6] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A
review of classification algorithms for EEG-based brain-computer
interfaces,” J. of Neural Eng., vol4, no. 4, pp. R1-R13, Jun. 2007.

[7] M. Mace, K. Abdullah-Al-Mamun, S. Wang, L. Gupta, and R.
Vaidyanathan, "Ensemble classification for robust discrimination of
multi-channel, multi-class tongue-movement ear pressure signals,"
Proc. IEEE 33rd Eng. in Med. Biol. Conf., pp.1733-1736, Aug. 2011.

[8] B. Yousefi, X. Huo, E. Veledar, and M. Ghovanloo, “Quantitative and
comparative assessment of learning in a tongue-operated computer
input device,” IEEE Trans. Info. Tech. in Biomedicine, vol. 15, no. 5,
pp. 747-757, Sep. 2011.

Figure 7. The effects of number of repetitions per command in the

training phase.

Figure 8. Improved mSSP algorithm vs. current mSSP algorithm.

Figure 6. The effect of number of samples maintained per command

to construct each class during training.

3695

	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

