
  

 

Abstract—A linear model-based (MB) approach for the 

evaluation of Granger causality is compared to a nonlinear 

model-free (MF) one. The MB method is based on the 

identification of the coefficients of a multivariate linear 

regression via least-squares procedure. The MF technique is 

grounded on the concept of local prediction and exploits the k-

nearest-neighbors approach. Both the methods optimize the 

multivariate embedding dimension but MF technique is more 

parsimonious since the number of components taken from each 

signal can be different. Both methods were applied to the 

variability series of heart period (HP), systolic arterial pressure 

(SAP) and respiration (R) recorded during spontaneous and 

controlled respiration at 15 breaths/minute (SR and RC15) in 

19 healthy humans. Both MB and MF methods revealed the 

increase of HP predictability during RC15 and the unmodified 

causality from SAP to HP and from R to HP during RC15, thus 

suggesting that nonlinear methods are not superior to the linear 

ones in assessing predictability and causality in healthy humans. 

I. INTRODUCTION 

AUSALITY provides indication about the mechanisms 

involved in cardiovascular control. For example, 

causality analysis suggested that in healthy humans at rest the 

dominant causal direction of interactions is from heart period 

(HP) to systolic arterial pressure (SAP) as a result of Starling 

law and diastolic runoff, while the decrease of the venous 

return induced by the orthostatic stimulus leads to the 

prevalence of the reverse causal direction [1].  

The operative definition of causality given by Granger in 

the field of multivariate stochastic processes provided a 

viable framework to assess causality in time series [2]. Given 

a set of M signals, , describing the behavior of the system 

under study, the time series yj Granger-causes another time 

series yi in  if yi can be predicted better in  than in  after 

excluding yj. In other words, yj Granger-causes yi in  if yj 

carries an unique information about the future evolution of yi 

that cannot be derived from any other signal present in .  

Granger causality is traditionally estimated based on the 
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description of the interactions among signals according to a 

multivariate linear regression model [3]. However, this 

model-based (MB) approach is adequate only when the 

interactions among signals are linear. Conversely, if 

dynamics are nonlinear, this approach might fail in 

interpreting dynamical interactions among processes, thus 

resulting in an erroneous interpretation of causal relations.  

Local prediction approach provides a multivariate 

framework for evaluating predictability of a process by 

relaxing the hypothesis of linear interactions [4]. Local 

prediction approach assumes that two samples of the same 

signal (i.e. yi(k) and yi(j)) will be close if the embedding 

vectors Zi(k)=(y1(k),…, y1(k-p),…, yi(k-1),…, yi(k-p),…, 

yM(k),…, yM(k-p)) and Zi(j)=(y1(j),…, y1(j-p),…, yi(j-1),…, 

yi(j-p),…, yM(j),…, yM(j-p)) formed by present and past 

samples of the signals belonging to  are similar, thus 

forecasting the future based on the knowledge of the past. 

Since this approach does not impose any form to the function 

mapping embedding vectors into yi, nonlinearities, if present, 

can be described via a model-free (MF) method. 

The aim of this study is to compare the traditional linear 

MB approach to the assessment of Granger causality with a 

nonlinear MF method based on local prediction. The issue of 

the reconstruction of the multivariate embedding space and 

optimization of the multivariate embedding dimension will 

be considered in both approaches. The two approaches will 

be tested over cardiovascular beat-to-beat variability of HP, 

SAP and respiration (R) during an experimental maneuver 

known to increase the likelihood to observe nonlinear HP 

dynamics (i.e. paced breathing) [5-7]. Indexes assessing 

causality from R to HP due to the direct influences of 

respiratory centers on vagal efferent activity and, in turn, on 

HP, and from SAP to HP due to cardiac baroreflex control 

will be estimated.  

II. METHODS 

A. General Definitions  

Given M series y1={y1(k), k=1,...,N},…, yM={yM(k), 

k=1,...,N} where N is the series length and k is the 

progressive counter, they are first normalized to have zero 

mean and unit variance. We define =y1,…,yi,…,yj,…,yM 

as the universe of our knowledge about the system under 

study. After labeling Yj
i
(k)=(yj(k-τj

i
),…, yj(k-p)) the 

embedding vector formed by pj
i
=p-τj

i
+1 components of yj, 

where τj
i
 represents the delay of the influence of yj on yi, the 
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multivariate embedding vector accounting for all signals 

present in  is Zi(k)=(Y1
i
(k),…,Yi

i
(k),…,Yj

i
(k),…,YM

i
(k)) 

and has dimension   





M

1k

i
ki )1p(Mq        (1) 

where 1≤τi
i
≤p and 0≤τk

i
≤p with 1≤k≤M and k≠i. All the 

multivariate embedding vectors form a set Zi={Zi(k), 

k=p+1,...,N. We model yi in Ω as  

)k())k(Z(f)k(y iii        (2) 

where f(
.
) represents the predicable portion of yi based on 

Zi and εi is the unpredictable part modeled as a white noise 

with zero mean and variance λi
2
. 

These definitions can be easily extended to the universe  

after the exclusion of yj, i.e. Ω/yj=y1,…,yi,…,yM. In this 

case the multivariate embedding vector obtained from Zi(k) 

after excluding Yj
i
(k) is Zi(k)/Yj

i
(k)=(Y1

i
(k),…, Yi

i
(k),…, 

YM
i
(k)) and the set of Zi(k)/Yj

i
(k) is indicated as Zi/Yj

i
.  

B. Linear MB Approach  

In the linear MB approach f(
.
) is a linear combination of 

the components of Zi(k) [3]. Traditional least-squares 

procedure can be exploited to estimate the coefficients of the 

linear combination minimizing the variance of εi. After the 

optimization procedure the variance of the prediction error 

2
î  can be evaluated. Due to normalization, 2

î  ranges 

between 0 and 1, indicating full and null predictability of yi 

respectively. 2
î  is a function of the multivariate embedding 

dimension, qi. Since in linear MB approach it is a common 

practice to build progressively the multivariate embedding 

space by adding a delayed component for each signal (i.e. M 

components at a time), 2
î  finally depends only on p [3] and 

p is usually referred to as the model order. It is well-known 

that 2
î  decreases towards 0 with p when 2

î  is assessed “in-

sample” (i.e. 2
î  is assessed over the same set of data 

utilized to estimate the coefficients of the multivariate linear 

regression). Therefore, cost functions are usually exploited to 

penalize large p. These cost functions are combined with 2
î  

leading to figures of merit (e.g. Akaike figure of merit [8]) 

the minimum of which allows the optimization of p and, in 

turn, the optimization of the multivariate embedding 

dimension, qi. Defined as p
o
 the model order minimizing the 

selected figure of merit, thus leading to an optimal 

multivariate embedding dimension, qi
o
, we indicate with 

)Z(ˆ
o
iq

i

2
i  the variance of the prediction error at qi

o
. The MB 

goodness of fit of yi (MBGFi) is computed as the variance of 

the predictable part (i.e. 1- )Z(ˆ
o
iq

i

2
i  due to normalization). 

C. Linear MB Granger Causality Approach 

The linear MB Granger causality from yj to yi is assessed 

according to the MB causality ratio (MBCRij) 

MBCRij
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where )Y/Z(ˆ i
j

q

i

2
i

jo

i  and )Z(ˆ
o
iq

i

2
i  represent the variance 

of the prediction error assessed at the optimal multivariate 

embedding dimension in Ω/yj and  (i.e. qi
jo

 and qi
o
) 

respectively. MBCRij quantifies the worsening of the 

prediction of yi when yj is excluded from Ω. If )Y/Z(ˆ i
j

q

i

2
i

jo

i  

is significantly larger than )Z(ˆ
o
iq

i

2
i , then yj Granger-causes 

yi in Ω [2].  

D. Nonlinear MF Approach 

K-nearest-neighbors approach can be exploited to perform 

local prediction [4]. The k-nearest-neighbors approach 

calculates the best prediction of yi(k) in  as a combination 

(usually the weighted mean [9]) over a subset of values of yi 

whose associated multivariate embedding vectors belong to 

the set of the k nearest neighbors of Zi(k). The closeness of 

points to Zi(k) is decided according to a predefined norm 

(usually the Euclidean norm). After calculating the 

prediction of yi in  the square correlation coefficient 

between yi and its prediction, ri
2
, can be assessed [9]. ri

2
 is 

bounded between 0 and 1 indicating null predictability and 

perfect predictability of yi. We followed a different strategy 

to build progressively the multivariate embedding space with 

respect to that utilized in the MB approach. Instead of adding 

one delayed component from each signal belonging to Ω at a 

time (i.e. M components at a time) as in the MB method, we 

added only one delayed sample at a time. Initially, the set of 

candidate new samples was {y1(k-τ1
i
),…, y1(k-P), …, yM(k-

τM
i
),…, yM(k-P)} where P is the maximum delay of the 

influences of each signal on yi. The added new sample was 

taken from the set of candidates as the one optimizing a 

criterion [10,11], i.e. here the maximization of ri
2
 at a given 

qi. As qi was increased, the set of candidates was reduced by 

excluding samples of a signal with time indexes more recent 

or equal to any component of the same signal already utilized 

to form the multivariate embedding space, thus avoiding 

duplicate selections and speeding up reconstruction. ri
2
 varies 

with qi. If Zi is helpful to predict yi, ri
2
 exhibits a maximum 

over qi [9]. Indeed, when qi is low, the dynamics of yi is 

roughly predicted and, when qi is high, the prediction 

worsens due to the scattering of points in the multivariate 

embedding space making the k nearest neighbors too far 

away to reliably predict future behaviors. Defined as qi
o
 the 

optimal multivariate embedding dimension, we indicate with 

)Z(r
o
iq

i

2
i  the square correlation coefficient between yi and its 

prediction at qi
o
. The MF goodness of fit of yi (MFGFi) is 

computed as )Z(r
o
iq

i

2
i . 
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E. Nonlinear MF Granger Causality Approach 

The nonlinear MF Granger causality from yj to yi is 

assessed according to the MF causality ratio (MFCRij) 

MFCRij
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where )Z(r
o
iq

i

2
i and  )Y/Z(r

i
j

q

i

2
i

jo

i  represent the square 

correlation coefficient assessed at the optimal multivariate 

embedding dimension in  and Ω/yj respectively (i.e. qi
o
 and 

qi
jo

). MFCRij quantifies the improvement of the correlation 

between yi and its prediction when yj is included in Ω/yj. 

According to the framework of the Granger causality [2], if 

)Z(r
o
iq

i

2
i  is significantly larger than )Y/Z(r

i
j

q

i

2
i

jo

i , then yj 

Granger-causes yi in Ω.  

III. EXPERIMENTAL PROTOCOL AND DATA ANALYSIS 

A. Experimental Protocol 

We studied 19 healthy humans (aged from 27 to 35, 

median=31; 11 females and 8 males). ECG (lead II), 

noninvasive arterial pressure (Finapres 2300, Ohmeda, 

Englewood, CO, USA) and respiratory flow via a nasal 

thermistor (Marazza, Monza, Italy) were recorded. Signals 

were sampled at 300 Hz. The experimental protocol included 

two sessions at rest in supine position: during spontaneous 

respiration (SR) and during controlled respiration at 15 

breaths/minute (RC15). During RC15 the subject breathed 

according to a metronome. All the sessions lasted 10 

minutes. The protocol adhered to the principles of the 

Declaration of Helsinki and was approved by ethical review 

board of the “L. Sacco” Hospital. 

B. Series Extraction 

After detecting the QRS complex on the ECG and locating 

its apex using parabolic interpolation, HP was approximated 

as the temporal distance between two consecutive QRS 

peaks on the ECG. The i-th SAP was taken as the maximum 

arterial pressure value inside the i-th HP. The i-th respiratory 

sample was taken at the first QRS peak delimiting the i-th 

HP. The length of the HP, SAP and R series was N=256. 

Series were linearly detrended.   

C. Assessment of Causality in Experimental Data 

Defined as y1=hp, y2=sap and y3=r we calculated MBGF1 

and MFGF1 in ={y1,y2,y3 and MBCR12, MFCR12, 

MBCR13 and MFCR13. We set τ2
1
=0 and τ3

1
=0 to describe 

the fast vagal reflex (within the same cardiac beat) capable to 

modify HP in response to changes of SAP and R [12,13]. 

The coefficients of the MB approach were identified using 

least-squares procedure and Cholesky decomposition method 

[3]. Akaike figure of merit was utilized to optimize the 

model order, p, in the range from 4 to 16 [8]. In the MF 

approach k was equal to 30, the maximum value for p and q1, 

P and Q1, was 10 and 12 respectively. In both MB and MF 

methods qi
jo

 was computed as qi
o
 minus the optimal number 

of components relevant to yj assessed in . 

D. Statistical Analysis 

Paired t-test was utilized to check differences between 

parameters during SR and RC15. If the normality test 

(Kolmogorov-Smirnov test) was not fulfilled, Wilcoxon 

signed rank test was utilized. After pooling together 

parameters relevant to SR and RC15 the same test was 

utilized to assess differences between MB and MF 

approaches. A p<0.05 was considered as significant. 

IV. RESULTS 

During SR the respiratory rate was 0.25±0.03 Hz and it 

was insignificantly different from that during RC15.  

Figure 1 shows the box-and-whiskers plots reporting the 

10
th

, 25
th

, 50
th

, 75
th

 and 90
th

 percentiles of MBGF1 (Fig.1a) 

and MFGF1 (Fig.1b), Both MB and MF approaches 

suggested that predictability of y1 increased during RC15. 

When data relevant to SR and RC15 conditions were pooled 

together, MBGF1 was significantly larger than MFGF1.  

Figure 2 shows the box-and-whiskers plots reporting the 

10
th

, 25
th

, 50
th

, 75
th

 and 90
th

 percentiles of indexes assessing 

causality from y2 to y1, i.e. MBCR12 (Fig.2a) and MFCR12 

(Fig.2b), and from y3 to y1, i.e. MBCR13 (Fig.2c) and 

MFCR13 (Fig.2d). Independently of the method utilized to 

assess predictability, causality indexes during RC15 were 

similar to those during SR. When data relevant to SR and 

RC15 conditions were pooled together, MBCR12 was 

significantly larger than MFCR12, while MBCR13 and 

MFCR13 were similar.  

V. DISCUSSION 

To the best of our knowledge this is the first study 

comparing causality indexes evaluated according to a linear 

MB approach with those derived from a nonlinear MF one. 

MB method is based on the estimation of the coefficients of 

a multivariate linear regression through traditional least-

squares procedure, on a strategy building progressively the 

multivariate embedding space by adding a component from 

each signal, and on the optimization of the multivariate 

embedding dimension through the Akaike figure of merit. 

MF technique is based on the local prediction paradigm and 

on the k-nearest-neighbors approach, on a strategy building 

 
Fig.1. Box-and-whiskers plots report 10th, 25th, 50th, 75th and 90th 

percentiles of MBGF1 (a) and MFGF1 (b) during SR and RC15.  
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progressively the multivariate embedding space by selecting 

inside the overall set of delayed samples that component 

maximizing the square correlation coefficient between signal 

and its prediction at a given multivariate embedding 

dimension, and on the optimization of the multivariate 

embedding dimension according to a procedure maximizing 

the agreement between the signal and its prediction in the 

multivariate embedding space.  

Independently of the technique utilized to make prediction 

HP series is more predictable in  during RC15 than during 

SR (Fig.1). This loss of complexity of the HP dynamics 

might be the effect of the regularization of the respiratory 

sinus arrhythmia and of slower HP rhythms imposed by 

paced breathing. It is worth stressing that a tendency towards 

a decreased complexity during RC15 has been already 

observed based on monovariate analysis of HP dynamics [9]. 

The multivariate analysis proposed in this study makes this 

finding significant. At first sight prediction based on the MF 

approach might appear to be less accurate than that of the 

MB method (i.e. the goodness of fit is lower). However, this 

finding is simply the result of the significantly smaller 

number of delayed samples utilized to make the MF 

prediction compared to the MB one. Indeed, the proposed 

strategy to build the multivariate embedding space in the MF 

approach constructs the conditioning pattern using only those 

components actually helpful to improve prediction.  

MB and MF approaches are equivalent in assessing 

indexes of causality (Fig.2). Since HP dynamics exhibit 

nonlinear components during RC15 [9], we suggest that 

these nonlinearities do not affect significantly the estimate of 

causality indexes. Future studies should apply surrogate data 

analysis [14] to clarify whether the relation from SAP to HP 

or from R to HP (or both) is responsible for nonlinear 

components of the HP dynamics.  

VI. CONCLUSION 

Findings of this study indicate that a nonlinear MF method 

based on k-nearest-neighbors approach is not superior to the 

linear MB one in assessing predictability and causality in 

cardiovascular variability series recorded from healthy 

subjects. Since nonlinearities are present in the HP series, 

especially during paced breathing, we suggest that nonlinear 

components are weak and well approximated by a linear 

model, thus limiting the advantage of using a nonlinear 

approach, such as the MF one. In pathological population, 

where the contribution of nonlinearities is more evident, the 

advantage of using a MF technique might become manifest 

and the proposed MF technique might become a tool to 

quantify more consistently than linear MB approaches [15] 

causality in the cardiovascular control. 
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Fig.2. Box-and-whiskers plots report 10th, 25th, 50th, 75th and 90th 

percentiles of MBCR12 (a), MFCR12 (b), MBCR13 (c) and MFCR13 (d) 

during SR and RC15. 
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