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Abstract— To understand the function of networks we have to
identify the structure of their interactions, but also interaction
timing, as compromised timing of interactions may disrupt
network function. We demonstrate how both questions can
be addressed using a modified estimator of transfer entropy.
Transfer entropy is an implementation of Wiener’s principle
of observational causality based on information theory, and
detects arbitrary linear and non-linear interactions. Using a
modified estimator that uses delayed states of the driving system
and independently optimized delayed states of the receiving
system, we show that transfer entropy values peak if the delay
of the state of the driving system equals the true interaction
delay. In addition, we show how reconstructed delays from
a bivariate transfer entropy analysis of a network can be
used to label spurious interactions arising from cascade effects
and apply this approach to local field potential (LFP) and
magnetoencephalography (MEG) data.

I. INTRODUCTION

Many complex phenomena, such as traffic systems, gene
regulatory networks, and neural circuits can be best under-
stood in terms of network analysis, describing the ways the
nodes of the network interact. Accordingly, neuroscience has
focused on discovering the interaction structure in such net-
works in terms of quantifying deviations from independence
between the activities measured at each node, using a variety
of linear and nonlinear techniques, ranging from simple
analyses of cross-correlations to fitting of autoregressive
linear [2] or dynamic models [8] or the use of model-free
measures from information theory [5], [16]. However, for a
better understanding of network function – and dysfunction
– parameters other than the interaction structure are also
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important. For example, to understand deficits present in
multiple sclerosis – a common neurological disorder where
axons loose their insulating myelin sheath, which slows
down conduction velocities and eventually leads to axonal
disruption –, we have to look at the interaction delays
between neurons. This is because interaction structure re-
mains topologically intact as long as the axons still exist
and carry action potentials. However, the drastically slowed
conduction velocity after loss of myelinisation [4] may
already severely disrupt network function by interfering with
the precisely tuned timing of neural activity [9]. Here, we
first demonstrate how an information theoretic measure of
directed interactions referred to as transfer entropy [5] can
be modified to reconstruct interaction delays. We then present
a graph-based method that uses these reconstructed delays to
identify putative spurious interactions between two network
nodes that are in fact mediated via one or more intermediate
nodes in the network (’cascade effects’), but do appear as
an interaction in bivariate analyses. This is important, as the
problem of spurious interactions frequently arises in analyses
using information theoretic tools, because the limited amount
of available data limits analyses to the bivariate case. The
proposed graph-based method is evaluated on simulated data,
LFP and human MEG data.

II. METHODS
A. Transfer entropy

Most measures of directed interactions, including transfer
entropy, are based on Nobert Wiener’s principle of observa-
tional causality which states that a time series X is called
causal to a second time series Y, if knowledge about the past
of X and Y together allows one to predict the future of Y
better than knowledge about the past of Y alone [1]. In many
networks the interactions of interest are nonlinear, e.g. the all
or none mechanisms of action potential generation and the
shunting mechanisms of inhibitory coupling in neural net-
works. The infinite number of possible nonlinear interactions
requires that the question of directed interactions is addressed
in a way that is free of a model of the interaction.This can
be achieved by reformulating Wiener’s principle in terms of
a conditional mutual information for Markov processes X,Y
[5], [16]:

TE(X → Y ) = I(Y +;X−|Y−) (1)

Where Y + is a future value of Y , whereas X− and Y−

denote suitably chosen past states of the processes X and Y ,
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respectively. The corresponding quantity has been described
several times (e.g. [6], [5]) and is most often referred to as
transfer entropy [5].

B. Interaction-delay reconstruction

To specify explicitly the ’suitably chosen’ past in Eq. 1
we suggest here to write:

TE(X → Y, u) = I(Y (t);X(t− u)|Y(t− u0)) , (2)

where u is a parameter introduced to represent a finite in-
teraction delay that we call the source delay here, and u0 is a
parameter that is chosen to ensure that the conditioning of the
mutual information is optimal in Wiener’s sense, i.e. we first
try to predict the future of Y optimally from past embedding
states Y(t−u0) by optimizing u0 and remove this influence
by conditioning on this optimal past state. In practical terms
this can be done using a criterion suggested by Ragwitz and
Kantz [7]. To perform the necessary reconstruction of states
of the signals we use Taken’s delay embedding [18] and write
the states of the systems as delay vectors of the form:

xd
t = (x (t) , x (t− τ) , x (t− 2τ) , . . . , x (t− (d− 1) τ)) ,

(3)

where d and τ denote the embedding dimension and
the embedding delay,respectively. These parameters can also
be optimized using Ragwitz’ criterion [7]. Using the states
obtained by delay embedding we can rewrite transfer entropy
in the form of four Shannon (differential) entropies as:
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These differential Shannon entropies can be estimated using
nearest-neighbor techniques in the embedding space [3]. As
the dimensionality of the spaces involved in Eq. 4 can differ
largely across terms, bias problems may arise and we used
the Kraskov-Grassberger-Stögbauer estimator which handles
this problem by fixing the number of neighbors in the highest
dimensional space and by projecting the resulting distances
to the lower dimensional spaces as the range to look for
neighbors [10]. After adapting this technique to the TE
formula, the estimator can be written as:

TE (X → Y, u) = ψ (k) + ⟨ψ
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(5)

where the distances to the k-th nearest neighbor in the highest
dimensional space (spanned by yt, y

dy

t−u0
, xdx

t−u) define the
radius of the spheres for the counting of points nZ in all
the marginal spaces Z involved. ψ denotes the digamma
function, while the angle brackets (⟨·⟩t) indicate an averaging
over different time points.

Finally, for a reconstruction of delays we scan different
values of the parameter u, identifying the value that maxi-
mizes information transfer from X to Y as the interaction
delay, based on the Markov properties of X,Y .

Due to ppossible residual bias, TE values have to be com-
pared against suitable surrogate data using non-parametric
statistical testing to infer the presence or absence of directed
interactions [16]. To this end we construct surrogate data
by shifting the time series of one of the two signals of
a pair by one experimental epoch or simulated block of
data, preserving as many data features as possible and
use permutation testing to assess significance. All applied
estimators and statistical procedures are available as part of
the TRENTOOL toolbox [14].

C. Graph based approach to the detection of cascade effects

If we are interested in more than two interacting processes,
we have to extend Wiener’s principle such that the past of all
processes except the one source process we are investigating
for its potential influence on a given target, are taken into
account. Modifying Eq. 1 accordingly we obtain:

TE(X → Y |V ) = I(Y +;X−|Y−,V−), (6)

where V− is the past state of all processes other than X,Y .
This quantity is called the ’complete transfer entropy’ [12],
and in principle correctly describes the information transfer
from X to Y in the presence of other influences. If the
bivariate formulation from Eq. 1 is used instead, we may
detect spurious information transfer from X to Y , although
the actual interactions pass from X to a third node Vi (or
more) and then from Vi to Y (’cascade effect’). While
the complete transfer entropy solves this problem, it may
be hard to estimate from finite data, because of the high
dimensionality of the resulting embedding spaces – although
novel embedding techniques [13] may to a certain degree
ameliorate this problem. Here, we propose an approximate
solution to the problem by exploiting the fact that in cascade
effects the actual delays d (and intra-node) processing times
accumulating in a multi-node pathway of interaction (e.g.
X → . . . → Vi → . . . → Y ) have to sum up to the
apparent delay reconstructed for the pathway from X to Y
for a spurious interaction. Reversing this argument, we can
safely assume that a link does not arise from cascade effects
if this condition is not met within the precision of our delay
reconstruction.

Algorithmically our task is thus to identify for any sig-
nificant transfer entropy value between two nodes i, j in
the network, that is associated with an interaction delay
dij , whether there is an alternative pathway between the
two nodes with an equal sum of interaction delays. To
this end we define the graph G = (V,E) with vertices V
denoting the nodes of the network and edges E representing
significant transfer entropy values between two nodes. Edges
are weighted by the respective delays between two nodes x
and y as w(x,y) = dxy . A multi-node pathway v0  vl
is described as a sequence of vertices ⟨v0, . . . , vi, . . . , vl⟩,
where l− 1 is the length (number of edges) of the pathway.
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The total weight of the pathway is the sum of the individual
weights of all edges comprising the path,

∑
i w(vi,vi+1).

To identify all alternative paths for a given edge (x, y),
the edge is removed from the network and its respective
nodes x and y are entered into the algorithm. Alternative
paths are then detected in two steps: (1) a memoized dynamic
programming approach [17] is used to determine, whether
any path x y of a given total weight exists; (2) a modified
depth first search (DFS) is used to reconstruct paths from the
solution obtained in step (1) to reject paths that contain loops
and to allow for further analysis.

Dynamic programming allows for the solution of a com-
plex problem by decomposing it into easily solvable sub-
problems. By starting with trivial base cases, subproblems
are solved iteratively by taking recourse to solutions to
previous (more simple) subproblems to reduce computational
demand. Solutions to previous subproblems are tabulated
and are used for the solution of successive subproblems.
Hence, in a first step the presented problem of finding a path
x y of weight w(x,y) is decomposed into subproblems of
the form ∃Pathx[wl, vi] (asking whether any path x  vi
with a certain weight wl exists). This is answered for all
combinations of nodes vj ∈ V and path weights wl =
1, . . . ,m (m denotes an upper limit for path weights that
is calculated as w(x,y) + k, where k denotes a user-defined
correction, that accounts for imprecisions in measurements
and estimation). The algorithm terminates when the solution
to the initial problem (∃Pathx[m, y], a path x y of length
m) can be computed from all previously solved subproblems.

In the second step, paths are reconstructed from the stored
solutions to the previously defined subproblems, using a
modified DFS [17], that starts with node y and recursively
expands the first predecessor of a node until node x is
reached. The reconstructed path is kept and the current
recursion is aborted, which leads to backtracking of the
algorithm until the most recent, not yet expanded node is
found. To avoid loops, visited nodes are marked in a boolean
array, such that visiting a node a second time during a
recursion leads to a preemptive backtracking of the search.

Backtracking is conducted for all paths x  y, that
have a total edge weight which lies within an interval
[n,m] (calculated as w(x,y) ± k). As the first part of the
algorithm iterates over all path lengths smaller than m, path
lengths from the interval [n,m] are automatically solved
as ’subproblems’ of the initial problem and can thus be
reconstructed by the second part of the algorithm. If a path
x y with a total weight within the interval exists, the edge
(x, y) is flagged as potentially spurious.

III. VALIDATION

A. Bidirectionally coupled Lorenz systems

We considered two bidirectionally, quadratically coupled
Lorenz systems:

Ẋi(t) = σ(Yi(t)−Xi(t))
Ẏi(t) = Xi(t)(ρi − Zi(t))− Yi(t) + γijY

2
j (t− δij),

Żi(t) = Xi(t)Yi(t)− βZi(t)

where i, j = 1, 2 j ̸= i; σ, ρ and β, are the Prandtl number,
the Rayleigh number, and a geometrical scale; γij represent
the coupling strengths , and δij the delays of the bidirectional
system. Simulation parameters were: σ = 10, ρ1 = 25,
ρ2 = 28 and β = 8/3, γ12 = 0.1 and γ21 = 0.05. The
interaction delays were set to δ12 = 3 and δ21 = 5. Solutions
were computed using the dde23 solver in MATLAB and
results were resampled such that the original delays δ12, δ21
amounted to 45 and 75 samples of resampled time. Analyses
were performed in TRENTOOL. The Ragwitz criterion was
used to determine the embedding dimension and lag τ . We
used a significance level of 0.05, corrected for multiple
comparisons via false dicovery rate to assess significance
of the coupling. To identify interaction delays we scanned
the source delay parameter u from 25 to 95 time steps in
steps of 1 sample. Transfer entropy values peaked a u = 45
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Fig. 1. Transfer entropy values versus source delay u for two bidirectionally
coupled, chaotic Lorenz systems.

and u = 75 samples for the interaction from system 1 to 2
and 2 to 1, respectively; these were also the true interaction
delays used for simulation.

B. Local field potential data
To demonstrate that spurious interactions due to cas-

cade effects are correctly identified using our graph-based
algorithm we reanalyzed LFP recordings from the retina
and tectum of the turtle brain (Pseudemys scripta elegans)
stimulated with random light flashes. Procedures have been
described in [14]. In short, stimulus light intensity, LFPs in
the tectum and the electroretinogram were recorded. Physical
interactions in this system exist from the light source (LS)
to the retina (R), and from the retina to the tectum (T). In
a bivariate transfer entropy analysis, a spurious interaction
is detected from LS to T [14]. For this spurious interaction,
the reconstructed interaction delays from the LS to the R
and from the R to T should sum up to the reconstructed
interaction delay between LS and T. We reconstructed the
interaction delays by scanning the source delay u using
TRENTOOL. The reconstructed delays were: d(LS,R) =
28 ms, d(R,T) = 13 ms, d(LS,T) = 43 ms, meaning that
the reconstructed delays added up with an error of 2 ms or
4%. Using the proposed graphical algorithm with a suitable
precision parameter therefore indeed identified the spurious
interaction between light source and tectum.
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C. MEG Data

Empirical datasets were obtained from MEG measure-
ments on 30 healthy participants, who had to complete a face
detection task [11]. Data were preprocessed and time courses
of active sources in the brain differentiating successful from
unsuccessful face recognition were extracted using a beam-
former approach implemented in Fieldtrip [15]. Transfer en-
tropy values and interactions delays were reconstructed using
TRENTOOL [14]. Figure 2 presents the transfer entropy
graphs before (left panel) and after pruning (right panel) with
the algorithm presented above. The correction term k was set
to 3 ms, such that paths were considered alternative paths to
the apparent edge (x, y), whenever the weight of the path
lay within the interval w(x,y) ± 3ms. On average this led to
the removal of 52% of the edges due to ’cascade effects’.

Fig. 2. Transfer entropy networks before and after pruning of potentially
spurious edges.

IV. DISCUSSION

The proposed modified transfer entropy estimator iden-
tified the true interaction delays in simulated data and
resulted in physiologically plausible values in neural data.
The proposed graph-based algorithm was able to identify
cascade effects in the test case of local field potential
data, and it revealed that cascade effects play a major role
in results from bivariate analysis of source activity from
human MEG recordings. Nevertheless, three important facts
should not be overlooked: (1) The algorithm can only label
potentially spurious interactions. If indeed two pathways -
one direct, and one via intermediate nodes, exist that have the
same timing, then we label a true interaction as potentially
spurious. Hence, arguments should build on positive results,
i.e. only those interactions where we can safely assume that
they are not due to spurious interactions. (2) The related
problem of ’common drive’ where one source node drives
two or more target nodes with different delays, was not
addressed in this study. It is however accessible using a
similar methodology, (3) Results depend on the precision
of the match of summed delay times we ask for. If no initial
guess about a suitable precision parameter exists, results may
be misleading. Again this suggests to interpret only those

interactions that are positively identified as not being due to
cascade effects.
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