
 

  

Abstract— The transfer entropy (TE) has recently emerged 
as a nonlinear model-free tool, framed in information theory, to 
detect directed interactions in coupled processes. 
Unfortunately, when applied to neurobiological time series TE 
is biased by signal cross-talk due to volume conduction. To 
compensate for this bias, in this study we introduce a modified 
TE measure which accounts for possible instantaneous effects 
between the analyzed time series. The new measure, denoted as 
compensated TE (cTE), is tested on simulated time series 
reproducing conditions typical of neuroscience applications, 
and on real magnetoencephalographic (MEG) multi-trial data 
measured during a visuo-tactile cognitive experiment. 
Simulations show that cTE performs similarly to TE in the 
absence of signal cross-talk, and prevents false positive 
detection of information transfer in the case of instantaneous 
mixing of uncoupled signals. When applied to MEG data, cTE 
detects significant information flow from the visual cortex to 
the somatosensory area during task execution, suggesting the 
activation of mechanisms of multisensory integration. 

I. INTRODUCTION 

The transfer entropy (TE) is an information theoretic 
measure of directed information transfer between interacting 
processes. Since its first introduction by Schreiber [1], TE 
has been recognized as a powerful tool for detecting causal 
interactions in time series data measured from coupled 
systems, as it offers an approach that is free of an explicit 
model of the studied dynamics and is sensitive to both linear 
and nonlinear interdependencies. The popularity of this tool 
has grown even more in recent years, thanks to the 
development of data-efficient estimation procedures which 
favored reliable TE computation from neurobiological data 
such as electroencephalographic (EEG) or magnetoencepha-
lographic (MEG) time series [2-6]. 

One major problem in studying interactions in non-
invasive multichannel neurobiological recordings such as 
EEG or MEG are the artifacts of volume conduction. Volume 
conduction is a consequence of the simultaneous mapping of 
single sources of brain activity, which are located inside the 
brain, onto several recording sensors, which are located on 
the scalp. The instantaneous mixing of unmeasured sources 
results in a nontrivial interference between the measured 
sensor data which unavoidably affects connectivity analyses 
performed at the sensor level [7,8]. In TE analysis, volume 
conduction artifacts can result in false positive detection of 
information transfer between pairs of channels both affected 
by the same cortical source having an internal memory 
structure [6]. 
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The aim of this study is to introduce a modified TE 
measure which is able to compensate for the spurious 
detection of information transfer between signals due to 
instantaneously shared background activity. The novel TE 
measure is proposed in combination with an approach for the 
efficient estimation of information transfer from short time 
series data [4], validated in comparison with the traditional 
TE on simulated systems reproducing conditions typical of 
neuroscience applications, and finally applied on MEG data 
recorded during a visuomotor integration task. 

II. METHODS 

A. Transfer Entropy 
Consider two stochastic processes x and y representing 

the evolution over time of the physical systems X and Y. Let 
xt and yt be the stochastic variables which describe the state 
visited by X and Y at the time t, and xn:t be the vector 
composed of all samples of x from time n up to time t. Then, 
the transfer entropy (TE) from X and Y is defined as [1] 

 TEX→Y = H(yt|y1:t-1) – H(yt|y1:t-1, x1:t-1), (1) 

where H(·) denotes Shannon entropy, which represents the 
uncertainty associated with any measurement a of a vector 
random variable a, H(a)= –∑a p(a)logp(a), and H(·|·) denotes 
conditional entropy (CE), which represents the uncertainty 
that remains about a when b is known, H(a|b)=H(a,b)–H(b). 
The TE defined in (1) quantifies the information transfer 
from X and Y as the amount of information carried by the 
most recent sample of the destination process y (i.e., yt) 
which is not contained in the past of the source process x 
(i.e., x1:t-1; here the origin of time is conventionally set at t=1). 

B. Compensated Transfer Entropy 
In the case in which the process x has an internal memory 

structure (i.e., xt is partly explained by x1:t-1) and is 
instantaneously correlated with the process y (i.e., yt is partly 
explained by xt), the TE defined in (1) can take significant 
positive values even if x1:t-1 is not useful to explain yt. In this 
situation, which may reflect e.g. the instantaneous mixing of 
a common signal into the two observed processes,  
information transfer from X to Y may be detected using the 
TE even when the two systems are uncoupled. To counteract 
this problem, we propose to incorporate instantaneous effects 
in both the CE terms into which TE computation is factored. 
Accordingly, we define the compensated TE (cTE) as 

 TEc
X→Y = H(yt|y1:t-1, xt) – H(yt|y1:t-1, x1:t). (2) 

With this definition, theoretical values of cTE are nonzero 
only when the knowledge of x1:t-1 is useful to explain yt above 
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Figure 1.  Example of computation of TE and cTE over realizations of the simulation in (4) with parameters C=0.4, ε=0 (a,b,c) and C=0, ε=0.4 
(d,e,f). (a,d) single realizations of the simulated processes; (b,e) estimation of H(yt|y1:t-1) (black circles), H(yt|y1:t-1,x1:t-1) (red circles), H(yt|y1:t-1,xt) (black 
triangles) and H(yt|y1:t-1,x1:t) (red triangles) using nonuniform embedding, with indication of the candidate terms selected at each step k of the 
sequential procedure; (c,f) median values of TE (circles) and cTE (triangles) estimated over 50 simulation realizations (black solid) and over 100 
permutations of the same realizations in which the signals for X and Y were randomly shuffled (gray open). 

and beyond the knowledge of y1:t-1 and xt alone. Note that in 
the absence of instantaneous correlation between xt and yt the 
cTE reduces to the traditional TE defined in (1). 

C. Transfer Entropy Estimation 
The practical computation of TE and cTE is based on 

reconstructing the state space of the systems X and Y from the 
available time series data. The typical approach to state space 
reconstruction is based on uniform time delay embedding, so 
that, e.g., x1:t-1 is approximated with the delay vector (xt-u, xt-u-

τ, ..., xt-u-(d-1)τ). This procedure requires setting the prediction 
time u, as well as the embedding delay τ and dimension d, 
which is a crucial but not easy task to perform [6]. To 
overcome the issues of arbitrariness and redundancy 
associated with uniform embedding, in this study we used the 
approach proposed in [4].  

The approach follows a procedure for nonuniform 
embedding whereby delay vectors are formed in a sequential 
way selecting progressively the samples that contribute most 
to the description of the observed dynamics. These samples 
are taken from a set of initial candidates which includes the 
past (and, when appropriate, present) states of X and Y, 
combined as indicated in (1) and (2) for the estimation of the 
various CE terms; for instance, the set of candidates for 
estimating H(yt|y1:t-1, x1:t) in (2) will be the vector of 2L+1 
terms given by (yt-τ, ... , yt-Lτ, xt, xt-u, xt-u-τ, ... , xt-u-(L-1)τ). 
Starting with an empty embedding vector, at each step the 
sequential procedure tests all candidates and then includes 
into the vector the candidate which minimizes the CE 
estimate. The procedure stops when a minimum of the CE is 
reached, and this minimum is used as in (1) and (2) for TE 
and cTE computation. As to CE estimation, the procedure 
exploits the corrected estimator proposed in [9], which is 
based on uniform quantization of the time series and 
compensation of the CE bias through introduction of a 
corrective term which penalizes isolated points within state 
spaces of increasing dimensions. While illustrative examples 
are shown in Fig. 1, we refer to [4] for a detailed description 
of the overall procedure. 

III. SIMULATED DATA 

To test the ability of TE and cTE to measure information 
transfer under situations relevant to neuroscience 
applications, we considered the simulated systems X and Y 
described by the stochastic processes x′ and y′ as 
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where u and w are uncorrelated white noise processes with 
zero mean and unit variance (n is the discrete time index). 
The parameters in (3) were set at a1=1.385, a2=-0.9025, 
b1=1.4266, b2=-1.465, b3=1.2875, b4=-0.5077, while the 
parameter C was let free to vary from 0 to 1 to mimic 
different degrees of unidirectional coupling from x′ to y′. 
With this choice and assuming an initial sampling rate of 100 
Hz, (3) generates oscillations at ~12 Hz for x′, and at ~5 Hz 
and ~25 Hz for y′, simulating respectively the presence of 
alpha, delta/theta and beta brain waves. 

After generating realizations of (3) of 1 s duration (i.e. 
100 samples length), we upsampled the series to get the 
series x′t and y′t measured at a simulated sampling frequency 
of 300 Hz. Then, instantaneous mixing of x′ into the two 
measured processes x and y was obtained as 

 ( ) ttt

tt
'y'xy

'xx
ε-1ε +=

=
, (4) 

where the parameter ε sets the amount of signal cross-talk. 
From these simulated signals, estimation of TE and cTE was 
performed setting the propagation time at u=4 ms and the 
delay embedding τ at the autocorrelation decay time (act) of 
each time series xt and yt, including L=10 terms in each set of 
initial candidates for the two systems, and using six levels for 
uniform quantization of the series in CE estimation. The 
analysis was repeated for 50 realizations (trials) of (4) for 
different selected combinations of C and ε. The statistical 
significance of the information transfer measured over the 50 
trials was assessed using a permutation test in which the 
surrogate distribution of TE or cTE in the absence of 
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Figure 2.  Median of TE (a) and of cTE (b) over 50 realizations of (4) 
computed from X to Y (circles) and from Y to X (triangles) as a 
function of the coupling strength C, with absence of signal cross-talk 
(ε=0); median of TE (c) and of cTE (d) computed from X to Y as a 
function of the amount of signal cross-talk ε, with absence (C=0, 
circles) and presence (C=0.4, triangles) of unidirectional coupling. In 
all plots, filled circles represent significant TE or cTE values assessed 
by means of the permutation test. 

coupling was reproduced through repeated random pairing of 
the signals from X and Y across trials. 

An example of a single realization of (4) generated with 
significant coupling but absence of instantaneous mixing 
(C=0.4, ε=0) is reported in Fig. 1a. The corresponding 
analysis of information transfer from X to Y, depicted in Fig. 
1b, shows that TE and cTE take the same value in this 
situation. Indeed, in both cases the nonuniform embedding 
procedure selects progressively the terms yt-5, yt-50 and yt-15 
when estimating the CE of Y conditioned to its past (black), 
and the terms xt-7, yt-10 and yt-35 when estimating the CE of Y 
conditioned to the past of X and Y (red). In all cases, the 
minimum CE is found at the step k=3 of the sequential 
procedure, yielding TEX→Y=TEc

X→Y=0.076 for this example. 
The same analysis extended to all 50 simulation trials 
confirms that TE and cTE detect the same information flow 
from X to Y, which is statistically significant as both TE and 
cTE median values lie clearly outside their corresponding 
distribution estimated by the permutation test (Fig. 1c). On 
the contrary, when considering realizations of (4) generated 
with absent coupling but significant mixing (C=0, ε=0.4) we 
see that only cTE correctly detects the absence of coupling, 
while CE provides a misleading indication of information 
transferred from X to Y. The analysis performed on the 
realization in Fig. 1d shows indeed that the past of X enters 
the embedding vector with the term xt-3 at the second CE 
estimation (Fig. 1e, up), yielding TEX→Y=0.049, while the 
instantaneous term xt enters both embedding vectors and this 
prevents the selection of any past term from X (Fig. 1e, 
down), yielding TEc

X→Y=0. The analysis performed over all 
trials shows that the median TE is significant as it is located 
at the upper bound of its surrogate distribution, while the 
median cTE is clearly non significant (Fig. 1f). 

The overall analysis summarized in Fig. 2 shows that TE 
and cTE perform very similarly in the absence of 

instantaneous mixing (ε=0, Fig. 2a,b), as both measures 
increase with the coupling strength C and are statistically 
significant for each C>0.1 when computed from X to Y, and 
are very low and never significant when computed over the 
uncoupled direction from Y to X. The difference between the 
two measures becomes apparent in the presence of significant 
signal cross-talk: while the CE gives a misleading indication 
of coupling from X to Y for uncoupled systems with 
instantaneous mixing (C=0, ε>0, Fig. 2c), the cTE correctly 
detects coupling only when C=0.4 and is never significant 
when C=0 regardless of the amount ε of signal cross-talk 
(Fig. 2d). 

IV. MEG EXPERIMENT 

The analyzed MEG signals were taken from a database of 
neurobiological recordings acquired during a visuo-tactile 
cognitive experiment [10]. Briefly, a healthy volunteer 
underwent a recording session in which simultaneous visual 
and tactile stimuli were repeatedly presented (60 trials). At 
each trial, geometric patterns resembling letters of the Braille 
code were both shown on a monitor and embossed on a 
tablet, and the subject had to perceive whether the pattern 
seen on the screen was the same of that touched on the tablet. 
The MEG signals (VSM whole head system) recorded during 
two consecutive time frames of 1 s, just before (rest window) 
and just after (task window) the presentation of the combined 
stimuli, were made available at a sampling frequency of 293 
Hz. 

To focus on the relevant information, two representative 
signals located in the somatosensory cortex (system X) and in 
the visual cortex (system Y) were considered for the analysis. 
At each trial, sensor selection was performed through a 
suitable event-related field analysis looking for the scalp 
location at which the signal magnitude was maximized in 
response to pure-visual or pure-tactile stimulation [10].The 
preprocessing consisted in FFT band-pass filtering (2-45 Hz) 
and removal of the event-related field from each task window 
by subtraction of the average response (over the 60 trials). An 
example of the analyzed signals is shown in Fig. 3a,b. The 
cTE analysis, performed with the same parameter setting of 
simulations (u=4 ms, τ=act, L=10), shows absent or very low 
amount of information transfer at rest (Fig. 3c), but reveals a 
non-negligible transfer from the visual to the somatosensory 
areas (measured by TEc

Y→X) during task (Fig. 3d). The overall 
analysis extended to the 60 trials shows that the information 
transfer is balanced but not statistically significant, according 
to the permutation test, in the rest condition (Fig. 3e), while it 
is markedly unbalanced with a prevalent and statistically 
significant transfer from visual to somatosensory areas during 
task execution (Fig. 3f).  

Statistical analysis of the cTE distributions over trials, 
performed according to a Student t-test for paired data, 
indicated that TEc

X→Y and TEc
Y→X were balanced at rest 

(p=NS), while moving to the task window TEc
Y→X increased 

significantly (p<0.01), becoming significantly higher than 
TEc

X→Y (p<0.001). Thus, statistical analysis confirmed the 
prevalence of the information transfer from visual to 
somatosensory areas during execution of the combined visuo-
motor task. 
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Figure 3.  MEG signals recorded from the somatosensory cortex (xt) and the visual cortex (yt) for a representative trial before (a, rest window) and 
after (b, task window) stimulus presentation, and corresponding estimation of cTE over the two directions of interaction for the rest window (c) and 
the task window (d). The overall analysis performed for all 60 trials is reported in (e) for the rest window and in (f) for the task window. Plots and 
symbols are as in Fig. 1. 

V. DISCUSSION 
Being model-free and able to capture both linear and 
nonlinear interactions, TE is a very flexible tool for the 
assessment of information transfer in coupled systems. Two 
main limitations regarding its application to neuroscience 
data are the difficulty of estimating entropies from short 
length datasets which hampers practical TE computation, and 
the confounding effects arising from the instantaneous 
mixing of unmeasured cortical sources which exposes TE to 
false positive detection of information transfer. The present 
study deals with these two problems, showing how they can 
be circumvented providing a tool that can reliably assess 
information transfer from pairs of neurobiological recordings. 
First, we combined TE with a data-efficient estimation 
procedure using nonuniform embedding and corrected CE 
[4]. We showed using simulations that, when the available 
data set has a trial structure, the proposed approach combined 
with proper statistical testing allows to detect information 
transfer for signals as short as 1 sec. Second, we faced the 
issue of instantaneous mixing allowing for the possibility of 
zero-lag effects in the computation of the two CE terms that 
enter the TE measure. Our simulations showed that the 
erroneous detection of information transfer for 
instantaneously mixed uncoupled signals may be prevented 
using this compensation. The proposed compensation is 
alternative to, and should be computationally more efficient 
than, the test of time-shifted data recently proposed to detect 
instantaneous mixing [3,6]. The application of the proposed 
approach to MEG sensor-level signals, where the problem of 
instantaneous mixing is inherent in the measurement method, 
suggests the feasibility of cTE for measuring information 
transfer across different brain regions during cognitive 
experiments. Our results, though certainly preliminary as 
obtained on a single subject, show that the considered 
matching paradigm may be able to evoke a response to 
combined visual and somatosensory stimulation, and that 
such a response may be quantified using the proposed cTE 
measure. Specifically, we hypothesize a specific role of the 
visual cortex in driving coherent activation of the 
somatosensory area during the execution of the combined 
visuo-tactile task, according to the involvement of 
multisensory integration mechanisms [11]. 
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