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Abstract— We propose a formal expansion of the transfer
entropy to put in evidence irreducible sets of variables which
provide information for the future state of each assigned
target. Multiplets characterized by an high value will be
associated to informational circuits present in the system, with
an informational character (synergetic or redundant) which can
be associated to the sign of the contribution. We also present
preliminary results on fMRI and EEG data sets.

I. INTRODUCTION

Information theoretic treatment of groups of correlated de-

grees of freedom can reveal their functional roles as memory

structures or those capable of processing information [1].

Information quantities reveal if a group of variables may be

mutually redundant or synergetic [2], [3]. The application

of these insights to identify functional connectivity struc-

ture is a promising line of research. Most approaches for

the identification of functional relations among nodes of a

complex networks rely on the statistics of motifs, subgraphs

of k nodes that appear more abundantly than expected in

randomized networks with the same number of nodes and

degree of connectivity [4], [5]. An approach to identify

functional subgraphs in complex networks, relying on an

exact expansion of the mutual information with a group of

variables, has been presented in [6].

On the other hand, understanding couplings between dy-

namical subsystems is a topic of general interest. Transfer en-

tropy [7], which is related to the concept of Granger causality

[8], has been proposed to distinguish effectively driving and

responding elements and to detect asymmetry in the interac-

tion of subsystems. By appropriate conditioning of transition

probabilities this quantity has been shown to be superior to

the standard time delayed mutual information, which fails

to distinguish information that is actually exchanged from

shared information due to common history and input signals.

On the other hand, Granger causality formalized the notion

that, if the prediction of one time series could be improved by

incorporating the knowledge of past values of a second one,
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Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Orabona
4, 70126 Bari, Italy.

4 D. Marinazzo is with the Faculty of Psychology and Educational
Sciences, Department of Data Analysis, Ghent University, Henri Dunantlaan
1, B-9000 Ghent, Belgium.

then the latter is said to have a causal influence on the former.

Initially developed for econometric applications, Granger

causality has gained popularity also in neuroscience (see,

e.g., [9], [10], [11], [12]). A discussion about the practical

estimation of information theoretic indexes for signals of

limited length can be found in [13].

In this work we propose a formal expansion of the transfer

entropy to put in evidence irreducible sets of variables

which provide information for the future state of the target.

Multiplets characterized by an high value, unjustifiable by

chance, will be associated to informational circuits present

in the system, with an informational character (synergetic

or redundant) which can be associated to the sign of the

contribution.
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Fig. 1. Concerning fMRI data, the distribution of the first order term in
the expansions, eqs. (9) and (4) are depicted.

II. EXPANSION OF THE TRANSFER ENTROPY

We start describing the work in [6]. Given a stochastic

variable X and a family of stochastic variables {Yk}
n
k=1,

the following expansion for the mutual information has been

derived there:

S (X|{Y }) − S(X) = −I (X; {Y }) =
∑

i
∆S(X)

∆Yi
+

∑
i>j

∆2S(X)
∆Yi∆Yj

+ · · · + ∆nS(X)
∆Yi···∆Yn

,
(1)

where the variational operators are defined as

∆S(X)

∆Yi

= S (X|Yi) − S(X) = −I (X; Yi) , (2)

∆2S(X)

∆Yi∆Yj

= −
∆I (X; Yi)

∆Yj

= I (X; Yi)− I (X; Yi|Yj), (3)
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Fig. 2. Concerning fMRI data, the distribution of the first order term in
the expansion of the transfer entropy, eq. (9), is compared with the results
corresponding to a reshuffling of the target time series.

and so on.

Now, let us consider n + 1 time series {xα(t)}α=0,...,n.

The lagged state vectors are denoted

Yα(t) = (xα(t − m), . . . , xα(t − 1)) ,

m being the window length.

Firstly we may use the expansion (1) to model the statis-

tical dependencies among the x variables at equal times. We

take x0 as the target time series, and the first terms of the

expansion are

W 0
i = −I (x0;xi) (4)

for the first order;

Z0
ij = I (x0;xi) − I (x0; xi|xj) (5)

for the second order; and so on. Here we propose to consider
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Fig. 3. Concerning fMRI data, the distribution of the second order term
in the expansions, eqs. (10) and (5) are depicted.

also

S (x0|{Yk}
n
k=1) − S(x0) = −I (x0; {Yk}

n
k=1) , (6)

which measures to what extent the remaining variables

contribute to specifying the future state of x0. This quantity

can be expanded according to (1):

S (x0|{Yk}
n
k=1) − S(x0) =

∑
i

∆S(x0)
∆Yi

+
∑

i>j
∆2S(x0)
∆Yi∆Yj

+ · · · + ∆nS(x0)
∆Yi···∆Yn

.
(7)
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Fig. 4. Concerning fMRI data, the distribution of the second order term in
the expansion of the transfer entropy, eq. (9), is compared with the results
corresponding to a reshuffling of the target time series.

A drawback of the expansion above is that it does not

remove shared information due to common history and input

signals; therefore we propose to condition on the past of x0,

i.e. Y0. To this aim we introduce the conditioning operator

CY0
:

CY0
S(X) = S(X|Y0),

and observe that CY0
and the variational operators (2) com-

mute. It follows that we can condition the expansion (7) term

by term, thus obtaining

S (x0|{Yk}
n
k=1, Y0) − S(x0|Y0) =

−I (x0; {Y }n
k=1|Y0) =

∑
i

∆S(x0|Y0)
∆Yi

+
∑

i>j
∆2S(x0|Y0)

∆Yi∆Yj
+ · · · + ∆nS(x0|Y0)

∆Yi···∆Yn
.

(8)
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Fig. 5. Concerning fMRI data, the distribution of the third order term in
the expansion of the transfer entropy, eq. (9), is compared with the results
corresponding to a reshuffling of the target time series.

We note that variations at every order in (8) are sym-

metrical under permutations of the Yi. Moreover statistical

independence among any of the Yi results in vanishing

contribution to that order: each nonvanishing term in this
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expansion accounts for an irreducible set of variables pro-

viding information for the specification of the target. The

first order terms in the expansion are given by:

A0
i =

∆S(x0|Y0)

∆Yi

= −I (x0;Yi|Y0) , (9)

and coincide with the bivariate transfer entropies i → 0
(times -1). The second order terms are

B0
ij = I (x0;Yi|Y0) − I (x0; Yi|Yj , Y0) , (10)

whilst the third order terms are

C0
ijk = I (x0; Yi|Yj , Y0) + I (x0;Yi|Yk, Y0)

−I (x0;Yi|Y0) − I (x0;Yi|Yj , Yk, Y0) .
(11)

An important property of (8) is that the sign of non-

vanishing terms reveals the informational character of the

corresponding set of variables: a negative sign indicates that

the group of variables contribute with more information, than

the sum of its subgroups, to the state of the target (synergy),

while positive contributions correspond to redundancy.

Another important point that we address here is how get

a reliable estimate of conditional mutual information from

data. In this work we adopt the assumption of Gaussianity

and we use the exact expression that holds in this case [15]

and reads as follows. Given multivariate Gaussian random

variables X , W and Z, the conditioned mutual information

is

I (X; W |Z) =
1

2
ln

|Σ(X|Z)|

|Σ(X|W ⊕ Z)|
, (12)

where | · | denotes the determinant, and the partial covariance

matrix is defined

Σ(X|Z) = Σ(X) − Σ(X, Z)Σ(Z)−1Σ(X, Z)⊤, (13)

in terms of the covariance matrix Σ(X) and the cross

covariance matrix Σ(X, Z); the definition of Σ(X|W ⊕ Z)
is analogous.

III. APPLICATIONS: MAGNETIC RESONANCE AND EEG

DATA

In order to test this approach on a real neuroimaging

dataset we used resting state fMRI data downloaded from the

website fcon 1000.projects.nitrc.org, and described in [16].

The resting-state scans were obtained for 25 participant using

a Siemens Allegra 3.0 Tesla scanner. Each scan consisted of

197 contiguous EPI functional volumes (TR = 2000 ms; TE

= 25 ms; flip angle = 90◦, 39 slices, matrix = 64 × 64;

FOV = 192 mm; acquisition voxel size = 3 × 3 × 3 mm).

All individuals were asked to relax and remain still with

their eyes open during the scan. Processing of BOLD signal

was performed using the Statistical Parametric Mapping

software (SPM8, http://www.fil.ion.ucl.ac.uk/spm), including

slice-timing correction, head motion correction, normaliza-

tion into the Montreal Neurological Institute space, and then

resampled to 3-mm isotropic voxels. The functional images

were segmented into 90 regions of interest (ROIs) using the

automated anatomical labeling (AAL) template reported in

previous studies [17]. For each subject, the representative
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Fig. 6. Concerning EEG data, the distribution of the first order term in
the expansions, eqs. (9) and (4) are depicted.

time series of each ROI was obtained by averaging the fMRI

time series across all voxels in the ROI. Several procedures

were used to remove possible spurious variances from the

data through linear regression [18],[19]. These were 1) six

head motion parameters obtained in the realigning step, 2)

signal from a region in cerebrospinal fluid, 3) signal from a

region centered in the white matter.
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Fig. 7. Concerning EEG data, the distribution of the first order term in
the expansion of the transfer entropy, eq. (9), is compared with the results
corresponding to a reshuffling of the target time series.

For each subject, we evaluated the first terms in the

expansions of the conditional mutual information. We then

pooled all the values of the terms in the expansions, from

all subjects and all targets, and we report their distributions

in the following figures. In figure (1) we compare the

distributions of A0
i , the first order terms in the expansion

of the information flow (equivalent to the bivariate transfer

entropy), with those of the equal time dependencies W 0
i . This

figure shows that the data set is characterized by equal time

statistical dependencies and by nontrivial causal connections.

In figure (2) the distribution of the bivariate transfer entropies

is compared with those obtained after a random reshuffling

of the target time series: the surrogate test at 5% confidence

shows that a relevant fraction of bivariate interactions is sta-

tistically significant. In figure (3) we report the distributions

of the second order terms, both for information flow and for
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instantaneous correlations: negative and positive terms are

present, i.e. both synergetic and redundant circuits of three

variables are evidenced by the proposed approach. Some of

these interactions are statistically significant, see figure (4).

In figure (5) we report the distribution of the third order

terms for the information flow which correspond to the target

Posterior cingulate gyrus, a major node within the default

mode network (DMN) with high metabolic activity and

dense structural connectivity to widespread brain regions,

which suggests it has a role as a cortical hub. The region

appears to be involved in internally directed thought, for

example, memory recollection [20]. We compare with the

corresponding distribution for shuffled target; it appears that

there are significant circuits of four variables, involving

Posterior cingulate gyrus, and most of them are redundant.
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Fig. 8. Concerning EEG data, the distribution of the second order term in
the expansions, eqs. (10) and (5) are depicted.

As another example, we consider electroencephalogram

(EEG) data obtained at rest from 10 healthy subjects. During

the experiment, which lasted for 15 min, the subjects were

instructed to relax and keep their eyes closed. Every minute

the subjects were asked to open their eyes for 5 s. EEG

was measured with a standard 10-20 system consisting of 19

channels [21]. Data were analyzed using the linked mastoids

reference, and are available from [22]. In figure (6) we

compare the distributions of A0
i and W 0

i . This figure shows

that also EEG data are characterized by nontrivial causal

connections. In figure (7) the distribution of the bivariate

transfer entropies is compared with those obtained after a

random reshuffling of the target time series: it shows that

a remarkable amount of bivariate interactions is statistically

significant. In figure (8) we report the distributions of the

second order terms, both for information flow and for in-

stantaneous correlations.

IV. CONCLUSIONS

In this work we generalized a recently proposed a formal

expansion of the mutual information, between a stochastic

variable and a set of other variables, so as to introduce a

corresponding expansion for the transfer entropy. The terms

of the proposed expansion put in evidence irreducible sets

of variables which provide information for the future state

of the target channel. The sign of the contribution due

a given multiplet is related to its informational character

(synergetic or redundant). We have reported preliminary

results concerning the application of the proposed approach

to fMRI data and to an EEG example, where it has put

in evidence the presence of informational circuits of three

and four variables. It is worth mentioning that recently a

approach which has been conceived for the same task has

been developed in a different frame [23], [24].
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