
  

 

Abstract: In this work, a novel system (method) for sleep 
quality analysis is proposed. Its purpose is to assist an 
alternative non-contact method for detecting and diagnosing 
sleep related disorders based on acoustic signal processing. In 
this work, audio signals of 145 patients with obstructive sleep 
apnea were recorded (more than 1000 hours) in a sleep 
laboratory and analyzed. The method is based on the 
assumption that during sleep the respiratory efforts are more 
periodically patterned and consistent relative to a waking state; 
furthermore, the sound intensity of those efforts is higher, 
making the pattern more noticeable relative to the background 
noise level. The system was trained on 50 subjects and validated 
on 95 subjects. The system accuracy for detecting sleep/wake 
state is 82.1% (epoch by epoch), resulting in 3.9% error 
(difference) in detecting sleep latency, 11.4% error in 
estimating total sleep time, and 11.4% error in estimating sleep 
efficiency. 
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I. INTRODUCTION 

Obstructive sleep apnea (OSA) is a prevalent sleep 
breathing disorder affecting 2% to 7% of adults that can lead 
to considerable morbidity. Partial or complete collapse of the 
upper airway during sleep has different effects on the human 
body, ranging from noisy breathing (snoring) to 
cardiovascular morbidity [1]. 

A patient with OSA usually snores during sleep. The 
snoring is then interrupted by a long silent period during 
which there is no breathing. This is followed by a loud snort 
and gasp, as the patient tries to breathe. This pattern usually 
repeats [2]. 

The most common approach to diagnose OSA is attended 
polysomnographic (PSG) study in the sleep laboratory. 
During PSG the subject is connected to numerous electrodes 
and sensors attached literally from head to toe, monitoring 
biological signals such as EEG, EMG, ECG, and respiratory 
efforts. PSG study is uncomfortable and expensive, [2] and 
sleep conditions are un-ideal. This led to seeking alternative 
methods of OSA diagnosis and sleep quality assessment as a 
whole. 

In order to reliably estimate pathological respiratory 
events, as well as other sleep disorders during sleep, it is 
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important to accurately estimate sleep quality parameters 
[3,4]. A typical sleep quality parameter set may include: 1) 
total sleep time (TST) – the overall duration of sleep stages 
when concatenated, 2) sleep latency (SL) – the elapsed time 
to falling asleep from lying in bed, 3) sleep efficiency (SE) – 
the ratio between TST and total time in bed, 4) wake-time 
after sleep onset (WASO) – the summation of all awakening 
episodes during sleep, and 5) awakening index (AI) – the 
average awakening per hour. 

Recently, the use of ambulatory at-home respiratory 
measurement technologies has become more frequently used. 
In these technologies the assessment of sleep/wake pattern is 
determined by a sleep diary completed by the patient and 
sometimes by a single channel EEG [5] and/or built-in 
actigraphy technology [3,6], and cardiac tempo [7,8]. 
Following whole-night data acquisition, sleep technologists 
must review the data in order to determine pathological 
respiratory events and sleep quality parameters. The main 
disadvantage of the available sleep quality technologies is 
that these methods require wearing costly sensors and 
devices; these devices are sensitive to use, they require 
ongoing maintenance, and tend to break. To the best of our 
knowledge, there is no technology available to estimate 
sleep/wake pattern using non-contact inexpensive 
technology. 

This paper describes a pioneering attempt to estimate 
sleep quality parameters using only audio signal. In this study 
we propose the use of a non-contact sensor – a microphone 
and a digital audio recorder that records the patient sounds 
from a one meter distance and enables a more natural sleep, 
and therefore more reliable sleep quality parameters. 

 

II. METHODS 

One hundred forty-five patients (over 18 years old) 
scheduled for the sleep laboratory were recorded during a 
full-night with a digital audio recorder device (EDIROL R-4) 
using a directional microphone (RODE NTG-1) at a distance 
of 1 meter above the head level and stored along with the 
PSG signals; the acquired audio signals are digitized at a 
sampling frequency of 44.1 kHz, PCM, 16 bits per sample. 
The raw audio signal is processed using the proposed system, 
which is shown in Figure 1. 

A. Preprocessing & noise reduction 

The full-night audio signal is down-sampled to 16 kHz. A 
noise reduction (spectral subtraction) algorithm is applied to 
the signal based on the Wiener-filter, which is based on 
tracking a priori SNR using the decision-directed method 
proposed by Scalart et al. [9]; this step is very important since 
it emphasizes the non-stationary events that were recorded 
during sleep such as snoring and low breaths. 
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Figure 1. Block diagram of the system. 
 

B. Energy signal calculation 

Once the audio signal is enhanced using the 
preprocessing stage, an energy signal, e(n), is calculated 
using a 60 ms Gaussian window with 75% overlap. The 
energy values are stored in dB scale in order to further 
emphasize the low events. 

C. Snore detection algorithm 

The snore detection algorithm consists of two main steps 
[10,11]: 1) audio event detection – audio events are 
automatically detected and segmented using an adaptive 
energy threshold and 2) snore detection – based on Gaussian 
mixture model (GMM). Each audio event is scored by a 
likelihood ratio score that represents the probability that this 
event is a snore event. 

D. Sleep quality related feature extraction 

Using the energy signal, e(n), two conjugated features are 
extracted: Breathing rhythmic period and Breathing rhythmic 
intensity. The purpose of those features is to evaluate the 
rhythmic pattern of respiratory action; the more periodic the 
respiratory action the better the sleep quality; any movement 
or body posture changes will be translated as temporary 
poorer sleep quality. In order to estimate the rhythmic 
features, the energy signal was segmented into 24-second 
segments with 19-second overlap (i.e., 5 second resolution). 
From each segment the autocorrelation vector R(τ) was 
calculated and the first peak within the range of 1 sec to 10 
sec was picked; this peak holds information about the basic 

rhythm period (location of the peak) and its intensity (its 
amplitude relative to its neighbors). The intensity feature, RI, 
is calculated as the product of the first peak amplitude value, 
R(τpeak), and the initial correlation area, Area ܴூ ൌ ܴ൫߬୮ୣୟ୩൯ ∙  (1)                ܽ݁ݎܣ

where Area is actually the normalized square area between 
the R(τ) curve and the aτ+1 linear line from R(0) to R(τpeak), 
calculated as: 

ܽ݁ݎܣ  ൌ ଵఛೌೖ ∑ ሺܽ߬  1 െ ܴሺ߬ሻሻଶఛೌೖఛୀ                                   (2) 

where a is the estimated linear slope. The more harmonic the 
energy pattern the greater is R(τpeak) and the greater the Area. 
A demonstration is shown in Figure 2. 

 
Figure 2. Rhythm pattern and correlation. Upper panel represents the 
energetic pattern of snores and breathing episodes. Bottom panel is the 
autocorrelation R(τ) of the segment. Note the rhythmic period is 
located at about 2 seconds and its intensity is calculated over the 
captured area between R(τ) and the line connected between  
[R(0), R(τpeak)]. 

The snores likelihood score (SLS) feature is calculated as 
the maximum of event scores s(x) within a one minute 
segment (segment rate of 5 seconds). Calculated as: ܵܵܮ ൌ max ൫ݏሺܠሻ൯ ൌ max ሺlog ௦ሻߣ|ܠሺ െ log  ሻሻ  ሺ3ሻߣ|ܠሺ

where λs and λn are the snore model and noise model, 
respectively, and p(xi|λ) is the probability of event feature 
vector xi given the model λ. 

E. Sleep quality score curve estimation 

Using the three sleep quality features, a sleep quality 
analysis (SQA) score curve is estimated for each patient. 
Since the sleep quality parameters are directly connected with 
two sleep phases, sleep and awake, a two-state hidden 
Markov model (HMM) is used; one state represents the sleep 
phase and the other state represents the awake phase (Figure 
3). 

 

 

 

 

Figure 3. Two-states HMM. 
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The HMM transition matrix was estimated using the labeled 
(30 sec) PSG epochs from the design database. Each state 
probability density function (pdf) is estimated using the 
labeled feature vectors. In the validation phase, integrating 
the transition probability with the pdf score of each feature 
vector, an SQA score is calculated – one score for every 
feature vector (5 second resolution). This SQA score 
represents a continuous scale between “Awake” (poor sleep 
quality) and “Sleep” (good sleep quality). A demonstration of 
the SQA score curve is shown in Figure 4 and Figure 5. 

 
Figure 4. A sleep pattern example of whole night recording from an 
OSA patient (female, age 66, BMI 41, AHI 32). Upper figure: the 
sleep state along with the manual annotations of OSA events 
monitored with PSG test. Lower figure: the SQA score and the three 
extracted features. (a) Breathing rhythmic period, (b) Breathing 
rhythmic intensity, (c) Snores likelihood scores. 

 

 

Figure 5. Another example of a sleep pattern of a patient with OSA 
and insomnia (male, age 80, BMI 39, AHI 51). See Figure 4 for details 

F. Estimation of sleep quality parameters 

Looking at Figure 4 and Figure 5 one can see that the 
awake/sleep phase can be easily determined from the SQA 
score curve by a discriminating threshold (e.g., at SQA score 
= 0). Affected by the demand for the application, one can 
arbitrarily formulate a measure from the full night curve (e.g., 
amount of continuous sleep stage, the variance within sleep 
stage, and so on). 

We chose to estimate the five most common sleep quality 
parameters: SL, SE, TST, WASO, and AI (see Introduction). 

 

III. RESULTS 

The experiment (study) was conducted using the database 
that is shown in Table I. In order to train (design) and 
validate our system, a common sample rate (segment rate) 
for the PSG and the SQA is necessary; therefore, we low-
pass-filtered and resampled every feature vector to a 30 
second rate so it can be compared with the accepted 30 sec 
PSG epoch. 

 

TABLE I.    PATIENT CHARACTERISTICS. 

 Design Validation 

Number of Patients 50 95 

Male/Female 31/19 59/36 

AGE (years) 52.8 ± 12.6 56.6 ± 16.0 

BMI (kg/m2) 31.7 ± 5.0 32.6 ± 6.4 

AHI (events/hr) 20.4 ± 18.5 21.6 ± 18.5 

Recorded length (min) 443.1 ± 63.2 451.9 ± 66.1 

BMI – Body mass index, AHI – Apnea and hypopnea index. 
Values are mean ± SD 

Table II shows the mean and SD values of the estimated 
sleep quality parameters for the design and validation study 
during PSG and the proposed SQA.  

TABLE II.    SLEEP PARAMETERS FOR THE DESIGN AND VALIDATION STUDY. 

 Design (N=50) Validation(N=95) 

 PSG SQA PSG SQA 

SL (min) 59.2 ± 50.0 59.7 ± 50.8 64.3 ± 69.0 54.8 ± 59.2

SE (%) 65 ± 14 69 ± 17 65 ± 13 69 ± 16 

TST (min) 286 ± 62 307 ± 84 290 ± 58 309 ± 68 

WASO (min) 47 ± 36 48 ± 58 43 ± 31 52 ± 54 

AI (e/hr) 5.1 ± 4 5.5 ± 6.6 4.7 ± 3.3 5.3 ± 5.1 

SL – sleep latency, SE – sleep efficiency, TST – total sleep time, SE – sleep 
efficiency, WASO – wake-time after sleep onset, AI – awakening index. 
Values are mean ± SD 

 
The accuracy of the proposed method was tested by 

analyzing the SQA score of each epoch, using the PSG 
labeled (sleep/wake) epochs as a gold standard. System 
performances were evaluated by ROC curve (Figure 6), 
where true positive (TP) is the correct detection rate of sleep 
phases, and false positive (FP) is the incorrect detection of 
awake phases as sleep.  
The overall accuracy in detecting sleep phases (epoch by 
epoch) was found to be 82.1%. 
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Figure 6. Performance evaluation, true positive (TP) detection of 
sleep phases vs. false positive (FP). 

 
Bland-Altman plot [12] is a method of data plotting used, 

particularly, in analyzing the agreement between two 
different medical measures. Examining the Bland and 
Altman plots and comparing the proposed SQA vs. the gold-
standard PSG sleep quality parameters (Figure 7) showed no 
major consistent bias. The plots also show (for SL, WASO, 
and AI) that the SQA values are closely matched to PSG in 
the left part of the plot, and therefore present less difference 
when the parameter values are relatively small; this implies 
reliability of the estimated parameters. 
 

 
Figure 7 – Blend-Altman plot of the PSG & SQA. X-axis represents 
the mean sleep parameter value between the PSG & SQA in the 
relevant parameter units (SL, TST, and WASO in minutes, SE in %, 
and AI in e/hr). The Y-axes represent the difference between the PSG 
and SQA parameter. The solid line represents the mean difference 
and dashed lines represent the 95% confidence interval.  
 

When calculating the absolute difference between PSG & 
SQA normalized by the record (signal) duration, the SL 
disagreement is 3.9 ± 5.4% (mean ± SD), TST and SE is 
11.4 ± 9.1%, and WASO is 8.2 ± 8.3%. The absolute 
difference between the AI parameters is 0.64 ± 0.54 e/hr. 

IV. DISCUSSION AND CONCLUSION 

The experiment was conducted utilizing more than 1000 
hours of audio recordings taken from 145 patients (50 for 
design, 95 for validation) during PSG study for OSA 
diagnosis as shown on Table 1; both groups were similar in 
demographic and PSG characteristics. According to the SQA 
score curve in Figures 4 and 5 one can see that there is a good 
correlation between the sleep pattern (sleep/wake states from 
the gold-standard PSG) and the proposed SQA curves. Since 
the SQA score curve is calculated using three sleep quality 
features, among them the snore likelihood score feature, a 
robust and low-false alarmed rate snore detector is necessary. 
We used our high-performance snore detector (97% accuracy 
with area of 0.9927 under ROC) [10]. Comparing our 
estimated sleep quality parameters with the wrist actigraphy 
method (Hedner et al. [3]), we found similar results. 

This paper proposed a novel non-contact method for 
estimation of sleep quality parameters from patients 
undergoing OSA diagnosis based on analyzing full night 
audio signals. The performances of the system are very 
encouraging and could serve as a basis to estimate sleep-
wake patterns using a simple single-channel non-contact 
audio technology. 
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