
  

 

Abstract—This study proposes a  novel method to assist the 

detection of the components that build up the Cyclic 

Alternating Pattern (CAP). CAP is a sleep phenomenon formed 

by consecutive sequences of activations (A1, A2, A3) and non-

activations during nonREM sleep. The main importance of 

CAP evaluation is the possibility of defining the sleep process 

more accurately. Ten recordings from healthy and good 

sleepers were included in this study. The method is based on 

inferential statistics to define the initial and ending points of the 

CAP components based only on an initialization point given by 

the expert. The results show concordance up to 95% for A1, 

85% for A2 and 60% for A3, together with an overestimation 

of 1.5 s in A1, 1.3 s in A2 and 0 s in A3. The total CAP rate 

presents a total underestimation of 7 min. Those results suggest 

that the method is able to accurately detect the initial and 

ending points of the activations, and may be helpful for the 

physicians by reducing the time dedicated to the manual 

inspection task.   

I. INTRODUCTION 

During the analysis of the electroencephalography 
records (EEG) in sleep, the physicians have observed some 
patterns in the EEG that are superimposed to the natural 
oscillations of the sleep stages [1]. These patterns present 
characteristics of repetition and frequency that are related to 
the sleep stage, sleep cycle and sleep condition. These 
features have been broadly studied in normal and pathologic 
conditions allowing for a deeper understanding of the sleep 
process [2-3]. This phenomenon is called Cyclic Alternating 
Pattern (CAP), since the patterns appear quasi-periodically 
during sleep. 

The superimposed patterns are named Phases A and are 
subdivided into three subtypes based on the characteristics 
of the oscillations present in the Phase A: 

 a) A1, composed by strong delta waves (0.5 Hz - 4 Hz). 
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 b) A2 with rapid EEG oscillations with 20 % - 50 % of 
the total activation time. 

  c) A3 also with rapid activities, especially beta (16 Hz -
30 Hz), with more than 50% of the total activation time.  

The shortest instance of the CAP is a CAP sequence. A 
CAP sequence is defined by three or more consecutive 
Phases A, separated by segments of background activity, 
that follow a specific rule based on their temporal relation 
and duration. The separation between two Phases A must be 
shorter than 60 s and longer than 2 s and at least 3 Phases A 
have to obey this rule to define a CAP sequence [1]. Finally 
from the CAP sequences a clinical index is defined which is 
called CAP rate. This index is computed by summing up the 
total duration of CAP sequences and dividing it by the total 
NREM sleep time. The CAP rate is low during normal sleep 
and high in pathological conditions.  

As mentioned previously, the Phases A must be found in 
order to compute the CAP rate. However, this task is hard 
and tedious, and the training process is long before a 
physician is expert enough to score a recording. After 
locating the Phases A, the second step is to identify the 
transition points between the Phases A and the background 
activity, in order to determine the duration of each 
activation. Generally, this process is even more difficult than 
identifying the Phases A, since sometimes the transitions are 
not clear. Furthermore, after some time of scoring, the expert 
may be tired and lose concentration, and as a consequence, 
some of the borders may be incorrectly located. These 
problems make CAP analysis a hard task, which is prone to 
errors and subjectivity. In addition, as commented in the 
definition of the Phases A, they present segments with 
specific oscillations but the distribution of these segments 
could be random. Thus, the automatic detection of the 
borders becomes a challenge. 

To solve this problem, some studies have analyzed the 
Phases A by obtaining indices such as power, complexity 
and spectral components. Most studies have used these 
indices to develop algorithms for automatic CAP detection 
[4-9]. Automatic methods achieved interesting results, but 
most of these studies fail in correctly locating the borders of 
the Phases A. Thus, a mathematical approach to 
automatically find the Phase A borders may be very useful 
to assist the physicians and the automatic methods in this 
hard task and reduce the subjectivity. 

The aim of the present study is to propose a novel 
method, based on statistical inference, to assist in the visual 
CAP scoring.  
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II. MATERIALS AND METHODS 

A. Polysomnographic Data and Annotations 

The study was carried out on 10 healthy adult subjects, 4 
males and 6 females, of age between 25 and 45 years (mean 
32.7 yrs). The sleep polysomnographic recordings (PSG), 
one per subject, were provided by the Parma University 
Sleep Disorders Center. Sleep analysis was carried out after 
one adaptation night to the sleep lab for screening purposes 
and adjustment. 

 Sleep structure annotation description. Hypnogram 
and CAP scoring were performed by sleep experts, 
following standard approaches. The macrostructure 
was defined according to conventional R&K rules, 
leading to a characterization of sleep stages every 30 
s, while CAP scoring was based on published 
guidelines [1]. 

 EEG data preprocessing. A single unipolar EEG 
derivation per subject was used for this analysis, 
either C3-A2 or C4-A1. The signal was sampled at 
100 Hz, and bandpass-filtered at 0.3-40 Hz. 

B. Method for border detection  

The automatic detection of the borders of a Phase A 
needs an initialization point (P) inside the Phase A. The 
process to define the right border is as follows: 

I.   From a given point P inside a Phase A, a vector x (of 

length n) centered around P is defined. 

II.   A new vector y (of length n) to the right of x is 

defined with an initial percentage σ of overlapping 

with x.  

III.   A statistical test for equal variance is computed 

between x and y. The null hypothesis H0 assumes 

that the standard deviation is equal for both vectors 

x and y. Note that this test will be biased, 

depending on the overlapping ratio σ. 

IV.If  H0 is accepted, thus: 

a. Replace x with y. 

b. Let σ = τ*σ, where τ is between 0 and 1. 

The factor τ reduces the amount of 

overlapping between x and y, and the bias 

of the statistical test.  

c. Obtain a new vector y to the right of x with 

an overlapping percentage given by σ.  

d. Return to step III 

V.If  H0 is rejected, then: 

a. Border position is found 

b. End 

 

A similar procedure can be performed to find the left 
border. 

The rationale for allowing a certain overlap between 
vectors x and y, and thus biasing the variance test, is that we 
want the test to be less strict around the initial point P, and 
become more strict as it becomes closer to the border. 

Fig. 1 shows the procedure graphically. Empty arrows 
show the initial and ending points defined by the expert 

while filled arrows represent the borders found by the 
assisted method. 

C. Evaluation process. 

To evaluate the performance of the algorithm, the Phases 
A were divided by type and additionally A1 according to the 
sleep stage. Table I shows the number of activations that 
belong to each type. 

TABLE I.   
NUMBER OF PHASES A GROUPED BY TYPE AND SLEEP STAGE 

 

Stage S1 and S2 Stage S3 y S4 

A1 A2 A3 A1  

826 792 649 1678 

 

 

Fig 1. Procedure used to assist the Phase A detection. x represents the 
base data vector and y the vector to be compared.  Empty arrows are initial 
and ending points defined by the expert while the filled arrows are the 
borders found by the assisted method. σ is the initial overlapping percentage 
between x and y, and τ is the overlapping reduction factor at each iteration. 

 

The following procedure was applied for each Phase A: 

I. We assume that the expert will give the initial point 
relatively close to the center of the Phase A. Thus, 
we give randomly an initial point in the center of the 
Phase A +/-  25 %  of the total duration.  

II.      The borders are defined following the procedure 
described in section B. 

III.      For each Phase A, the performance of the method is 
measured with respect to the expert annotations 
based on two measures: overestimation and 
concordance.   

 Concordance. Time that the computed Phase A duration 
overlaps with the expert annotation.  

  Overestimation: The difference between the computed 
duration when this is higher than the expert 
annotation.  

D. Parameter selection. 

The parameters to be defined are n, σ and τ. The optimal 
values of the parameters are those that maximize the 
concordance and minimize the overestimation. Note that n 
must be carefully selected because: a) a small value of n 
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produces a fast rejection of H0 thus an underestimation 
occurs and b) a large value of n produces a low rejection of 
H0 leading to overestimation of the duration. The value of n 
was defined for A1-A2 (3 s) and A3 (7 s), based on the 
mode of the duration histogram found for each type of 
activation (see Fig. 2).  

Thereafter, a brute-force search algorithm was applied to 
the whole dataset to find the values of the σ and τ parameters 
that optimize the performance measures. The best 
performance measures were σ = 90% and τ >= 0.5. 

Two metrics were employed to assess the proposed 
approach: 

 A detailed comparison of the detected segments via 
concordance and overestimation histograms 

 A macroscopic comparison of the outcome, based on 
a well established CAP-based index [10], the CAP-
rate, which represents the total CAP time in NREM.  

 

Fig 2. Box plot representation of the duration for each type of Phase A. 

III. RESULTS 

Figure 3 shows the histograms of the percentage of 
concordance and overestimation for the different types of 
Phases A.  One can observe that the concordance is very 
high most for Phase A1 and A2, while generally the 
overestimation remains under the 3 seconds. However, this 
is not true for Phase A3. The histogram presents almost a 
flat distribution in the percentage of concordance even if the 
overestimation is generally very low.  

Finally, Table II shows the CAP rate evaluated through the 
expert annotation and the assisted method. One can observe 
that the maximum error is around 7 min (subjects 2, 5) and 
the CAP rate computed by the assisted system is often lower 
(except for subject 3).   

IV. DISCUSSION   

This study proposes a novel method to detect the borders 
of the components that build up the Cyclic Alternating 
Pattern. This method is based on statistical inference and 
needs only one point of initialization inside each Phase A. 

Our main observations are: a) Statistical inference seems to 
be a fine tool to find the borders of the Phases A, b) The 
CAP rate evaluated trough the assisted system and the expert 
annotation are very close, this means that the proposed 
method could be useful to simplify the scorers work and c) 
Borders of Phases A1 seem to be well defined while borders 
for Phases A3 need further study, even if the results seem 
adequate. 

 

 

Fig 3. Histograms of the percentage of concordance and overestimation for 
the Phases A 

 

TABLE II.   
CAP RATE ( HOUR:MINUTE). 

Subjet CAP  Visual CAP Assisted 

0 3:33 3:27 

1 3:39 3:36 

2 3:07 3:00 

3 2:27 2:33 

4 1:48 1:43 

5 1:23 1:16 

6 2:20 2:17 

7 2:48 2:45 
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8 2:40 2:36 

9 2:06 2:00 

    In this study, a single statistical test (specifically a 
variance test) was used to detect the Phases A borders. 
Nevertheless, it is possible to combine this methodology 
with spectral, linear and nonlinear indices to obtain a more 
robust algorithm.  

In general, the borders of the Phases A1 are well 
detected, while, for Phases A3 the performance was slightly 
poorer. The main reason is that Phase A3 is typically longer 
that A1 and A2. This affects directly the inference test, since 
the method underestimates the A3 duration. Another reason 
is due to the Phase A3 properties. As Phase A3 is long, it 
presents variations in the frequency content and complexity, 
this means, alternation between the EEG waves: Beta, 
Alpha, Theta and Delta, which produce changes in the 
statistical properties inside the Phase A. Thus, this generates 
errors since the statistical inference detects significant 
changes within the A3 activation.  

The proposed method generates new perspectives to 
evaluate the CAP sleep. This method is intended to support 
to the physician in the hard task of detecting Phase A 
borders. It is easier to select only one point in the middle of 
each observed activation than to manually determine starting 
and ending point of thousand of activations that could be 
found in a single recording.  In addition, this methodology 
could be part of the decision stage of an automatic system 
[9], allowing for a better detection of the borders.  

V. CONCLUSION 

Assisted detection of the Phases A borders can be 

performed by a simple algorithm based on statistical 

inference. This methodology could support the scorers by 

simplifying the CAP evaluation and reducing the time 

required to analyze a sleep recording. The borders of Phases 

A1 and A2 can be detected accurately, however, further 

research is needed to improve the results for Phases A3.    
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