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Abstract—Respiratory sound analysis is a simple and non-
invasive way to study the pathophysiology of the upper airway
(UA). Recently, it has been used to diagnose partial or complete
UA collapse in patients with obstructive sleep apnea (OSA). In
this study, we investigated whether fluid accumulation in the
neck alters the properties of respiratory sounds in temporal and
spectral domains and whether the respiratory sounds analysis
can be used to monitor variations in the physiology of the UA,
as reflected by UA resistance (RUA). We recorded respiratory
sounds and RUA from 19 individuals while awake. We applied
lower body positive pressure (LBPP) to shift fluid out of the legs
and into the neck, which increased RUA. We calculated first
and second formants and energy of inspiratory sound segments.
Our results show that during both control (no LBPP) and LBPP
arms of the study, the extracted features were different for the
sound segments corresponding to low and high RUA. Also, the
features were different during control and LBPP arms of the
study. With the application of support vector machine (SVM)
based classifier, we were able to classify the sound segments
into two groups of high/low resistance during control and LBPP
arms and into two groups of control/LBPP when including all
sound segments. The accuracies of non-linear SVM classifier
were 74.5 ± 19.5%, 75.0 ± 15.4% and 77.1 ± 12.3% for the
control arm, LBPP arm and between the arms, respectively.
We also showed that during the LBPP arm, the variations in
first formant of the sound segments corresponding to low and
high RUA was much less than during the control arm. This
indicates that with application of LBPP and accumulation of
fluid in the neck, there are less variations in the morphology of
the UA in response to changes in RUA, than during the control
arm. These results indicate that acoustic analysis of respiratory
sounds can be used to investigate physiology of the UA and how
interventions can alter UA properties.

I. INTRODUCTION

Obstructive sleep apnea (OSA) is a common disorder

that increases cardiovascular morbidity and mortality [1, 2].

Although, OSA occurs due to the partial or complete collapse

of the upper airway (UA) during sleep, the underlying mech-

anisms of this collapse are not fully understood. Recently,

we proposed a novel paradigm for the pathogenesis of OSA:

sedentary living leads to fluid retention in the legs in the

daytime and to a shift of some of this fluid into the neck
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when lying down at night. The rostral fluid shift into the

neck causes UA narrowing, induces UA obstruction and

predisposes subjects to OSA. Therefore, developing non-

invasive techniques to monitor fluid accumulation in the neck

may enhance our understanding of the pathophysiology of

OSA and to implement treatment targeted at specific causes

of OSA in different individuals.

Nocturnal fluid shift from the legs into the neck could

cause distension of the neck veins and/or edema of the

peripharyngeal soft tissue and facilitate UA obstruction. In

previous studies, we applied lower-body positive pressure

(LBPP) via inflatable trousers to awake individuals to simu-

late nocturnal fluid displacement out of the legs. We demon-

strated that fluid shift out of the legs to the neck narrowed

the UA and increased its resistance to airflow in healthy non-

obese subjects [3]. Fluid displacement also increased UA

collapsibility in healthy men while awake [4]. We have also

shown that during the night, the volume of fluid displaced

from the legs strongly related to the degree of overnight

increase in neck circumference and severity of OSA in non-

obese otherwise healthy men, men with heart failure, end-

stage renal disease, and patients with hypertension [5-7].

Respiratory sounds analysis is a simple and non–invasive

technique to study the pathophysiology of the UA and has

been widely used for investigation of UA obstruction [8-13].

In a previous study, we showed that tracheal sounds analysis

can reflect variations in the anatomy of the UA, such as its

lengths and diameter [14]. In another study, we applied LBPP

to healthy awake individuals and simultaneously recorded

upper airway resistance (RUA) and respiratory sounds with

a microphone in front of the nose. Our results demonstrated

that for periods with large differences in RUA, the auto

regressive (AR) coefficients of the corresponding inspiratory

sound segments were different [15].

The goal of this study is to investigate respiratory sound

to examine the correlation between changes in RUA and

the corresponding variations in the sound features in the

temporal and spectral domains. We also aim to validate the

accuracy of acoustic methods to predict alterations in the

physiology of the UA as assessed by an objective measure

of RUA.

II. METHOD

A. Data

Data of this study were recorded from 18 subjects (14

men, 4 women) aged 55.6 ± 10.2, with a mean body mass

index (BMI) of 32.2± 8.7, and mean number of apneas and
hypopneas per hour of sleep (apnea-hypopnea index, AHI)
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Fig. 1. Schematic of the setup for recording respiratory sounds and
transpharyngeal pressure, along with samples of the recorded sound [15].

of 36.73 ± 20.80. Subjects were recruited by advertisement

with no restriction on sex, age or BMI. With subjects awake

and lying supine, respiratory sounds were recorded with a

microphone (MX185, Shure) which was embedded in a full

face mask and positioned in front of the subject’s nose.

Respiratory sounds were bandpass filtered in the frequency

range of [20 − 10, 000]Hz and digitized with a sampling

rate of 22kHz. The sound signals were later lowpass filtered

with the cutoff frequency of 4kHz, which includes the main

frequency components of respiratory sounds, and down-

sampled to the sampling rate of 10kHz.

Transpharyngeal pressure was measured as the difference

between nasopharyngeal and hypopharyngeal pressure which

were recorded by two catheters as shown in Fig. 1. Air-

flow was measured simultaneously by a pneumotachometer

attached to the outlet of the mask. RUA was measured

by dividing the transpharyngeal pressure by airflow. This

study was approved by Research Ethics Board of Toronto

Rehabilitation Institute.

B. Lower Body Positive Pressure

To simulate overnight rostral fluid displacement out of

the legs, LBPP was applied to both legs with an inflatable

vinyl trousers connected to an air pump and manometer.

The trousers were fitted around the subjects legs from the

ankles to the hips in the deflated state. The subjects were

randomly assigned to either a control arm, during which

trousers were left deflated, or to a LBPP arm, during which

the trousers were inflated to 40 mmHg. After a 15 minute of

washout period, subjects were crossed over to the opposite

arm. Respiratory sounds, transpharyngeal pressure and flow

were recorded continuously during both arms.

C. Feature Extraction and Investigation

Research personnel detected periods of inspiratory sounds

void of snoring and wheezing noises by listening to the

sounds and observing the signals in both time and fre-

quency domains. Inspiratory sound segments were extracted

during both control and LBPP arms of the study, and the

corresponding RUA were also measured. For every sound

segment, linear predictive coding (LPC) was used to find

the formant frequencies which represent resonance in the

UA [16]. Since the duration of the inspiratory segments can

be as long as two seconds, the sounds are not stationary

in the whole segment. Therefore, in every segment, sound

signals were windowed with a Hamming window of 50ms

with 75% overlap. In each window, the signal was estimated

by an AR model. The optimum order of the AR model for

formant estimation has a strong correlation with the sound

sampling rate [17]. It was found that for sampling rates of

Fs ∈ [6 − 18]kHz, the optimum order of the AR model

would be M = Fs(kHz) + γ where γ = 4, 5. In this study,
we down–sampled the sound signals to the sampling rate

of 10kHz. Therefore, an AR model of order 14 was used

to estimate formant frequencies. The roots of the AR model

were calculated and angles of the complex roots with positive

real values were estimated to find the first two formant

frequencies (F1, F2).

In order to investigate how formant frequencies change

with variations in RUA, we used the average of the recorded

RUA during control and LBPP arms as a threshold to

define sound segments with high and low RUA. For every

subject, the average of formants (Fi) for sound segments

with high and low RUA were calculated and the difference

∆Fi = Fi(RUA(High)) − Fi(RUA(Low)) was estimated

for control and LBPP arms. We estimated the probability

density function (pdf) of ∆Fi (pdf(∆Fi)) among all subjects
and investigated its variations in each arm of the study as a

measure of the local variations in the morphology of the UA

due to variations in RUA.

On the other hand, UA narrowing increases turbulence

of airflow which consequently increases respiratory sounds

intensity. Therefore, we investigate the average of sound

intensity in every inspiratory segment as the third feature

to monitor variations in RUA due to the increase in fluid

accumulation in the neck.

D. Sounds Segments Classification

In this study, our aim was to investigate whether respira-

tory sound analysis can reflect variations in the physiology

of the UA as assessed by increases in the RUA or application

of LBPP. To achieve this goal, we took two approaches:

first, a linear regression model was applied to the sound

features including formant frequencies (F1,F2) and sound

intensity. Performance of the regression model was validated

in terms of the statistical significance of the model outputs

(p-values of less than 0.05). In the second approach, we used

both linear and nonlinear Support Vector Machine (SVM)

classifier to group the inspiratory sound segments into two

clusters.

SVM is commonly used to classify data vectors xi (x is

a vector of F1, F2 and intensity) into two classes of ci =
±1. The optimal separating hyperplane, is defined for which
the margin between the most similar samples in each class,

which are called support vectors (SVs), is the largest. When

boundaries between the two classes are more complex, a set

of non-linear functions φ(x) is defined to transform the data

vectors into a higher dimension; for which the transformed

vectors can be separated by a hyperplane (Non-linear SVM).

For non-linear SVM, the classification problem reduces to
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maximizing the function L(α) with respect to α [18]:

L(α) =

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjcicjK(xixj), (1)

satisfying the conditions that
∑n

i=1
αici = 0 and αi ≥ 0, i =

1, · · · , n. In this study, we investigated the classification

performance for linear SVM and non-linear SVM with two

different kernels:

Quadratic Kernel : K(xi, xj) = (xi.xj)
2,

RBF Kernel : K(xi, xj) = exp(−
‖xi − xj‖

2

2σ2
).

We investigated the performance of a linear regression model

and SVM classifiers in three different scenarios. The goal

of the first and second scenarios was to classify the sound

segments into high and low RUA. In the first scenario, sound

segments were selected from each subject during the control

arm. For each SVM classifier, cross validation was used to

select 70% of sound segments as a training data-set and the

rest as a validation data-set and then to estimate the accuracy

of the classifier. This routine was repeated 50 times and the

accuracy values were averaged among all trials to remove

sensitivities to the choice of training and validation data-sets.

The second scenario is similar to the first one, except that

sound segments were extracted during LBPP period. For the

third scenario, we used the sound segments recorded during

both control and LBPP arms of the study. The aim of the third

scenario was to investigate how accurately the regression

model and SVM classifiers can distinguish between the

sound segments recorded during different arms of the study,

regardless of the variations in the RUA within each arm.

III. RESULTS AND DISCUSSION

In order to determine how features of respiratory sound

segments change within different scenarios, formants data

of a typical subject are shown in Figure 2. In Fig. 2a the

sound segments were extracted during the control arm of

the study and the two clusters show the feature vectors

corresponding to low and high values of the RUA. Similarly,

Fig. 2b shows the scatter plot of the features during LBPP

period. Comparing the results of Fig. 2a and b, it is clear

that although for this subject linear SVM can classify the

feature vectors during the LBPP arm, its performance would

be poor for the control arm, and non-linear SVM would

perform better. For this subject, the accuracy of linear SVM

classifiers were 66.7% and 83.3% for control and LBPP

arms, respectively, while the RBF SVM classifier performed

better for the control and LBPP arms with the accuracies of

93.8% and 100%, respectively.

On the other hand, the scatter plot of feature vectors shows

that during the control arm, first formant frequencies were

expanded over a larger range of frequencies ([195−700]Hz),

while during LBPP arm, the range of variations in F1 are

smaller ([200 − 313]Hz). This is more evident in Fig 2c

which shows the scatter plot of all sound segments during

control and LBPP arms of the study. Furthermore, the
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Fig. 2. Scatter plots of the first and second formants extracted from
inspiratory sound segments of a typical subject during: a) control arm, b)
LBPP arm, and c) both arms.

difference between the average of F1 for the sound segments
with low and high RUA (Fig 2a and b) is smaller during

LBPP arm.

Figure 3 shows pdf(∆F1) for all subjects. It is clear that
pdf(∆F1) is wider during the control arm than during the

LBPP arm, where it is congregated around zero. Based on

these results, it can be shown easily that the entropy of

variations in the first formant of inspiratory sound segments

is smaller during LBPP than during the control arm. Similar

to speech signals, variations in the area and shape of the

UA change the formant frequencies [19]. Therefore, wider

variations in ∆F1 in response to variations in its resistance

indicate that during control arm the shape of the UA probably

changed more than it did during LBPP. One interpretation

could be that by applying LBPP, part of the fluid which is

moved out of the legs accumulates in the internal jugular vein

which is located adjacent to the UA. The extra fluid around

the UA not only narrows the size of UA, but it may reduce

the available space between UA and internal jugular vein

and may limit the possible range of variations in the shape

and size of the UA. This hypothesis can only be verified by

imaging the neck and UA before and after the application

of LBPP. It should be noted that pdf(∆F2) was similar for
both arms of the study (data not shown due to the lack of

space).

The results of linear regression models for separating

the sound segments into two groups of low/high resistance

(during control or LBPP arms) or control/LBPP arms (for all

sound segments) are shown in Table I. The results show that

during control and LBPP arms, the linear regression model

was significant only for 47% and 37% of subjects, while

for the between arm scenario, the model was significant for

74% of subjects. Figure 4 shows the average and standard

deviation of accuracy of different SVM classifiers for differ-
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Fig. 3. Pdf(∆F1) for the sound segments with low and high RUA during
control (solid line) and LBPP (dashed line) arms of the study.

TABLE I

THE NUMBER OF SUBJECTS WITH SIGNIFICANT RESULTS OF THE LINEAR

REGRESSION MODEL IN MAPPING SOUND FEATURES INTO TWO GROUPS.

Scenarios

Number (%) Control Arm LBPP Arm Between Arms

of Subjects 9 (47%) 7 (37%) 14 (74%)

ent selection of sound segments. In general, RBF classifier

performs better than the other classifiers and the detailed

results are presented in Table II.

The results of this study confirm that the first two formants

and energy of inspiratory sound segments can represent

variations in the morphology of the UA due to the accu-

mulation of fluid in the neck as assessed by changes in

RUA. These results may pave the way to develop acoustic

methods for investigating the variations in the UA properties

due to fluid accumulation in the neck or other factors that

may change UA shape and predispose to OSA. Furthermore,

this information might be useful in assessing the site of UA

obstruction, how treatments of OSA affect the UA properties

and which types of treatment may achieve better outcomes

in different populations of patients with OSA.

Fig. 4. Average and standard deviation of accuracy of different SVM
classifiers for different selections of sound segments.

TABLE II

ACCURACY OF RBF BASED CLASSIFIER FOR DIFFERENT SELECTION OF

SOUND SEGMENTS.

Control Arm LBPP Arm Between Arms

Sensitivity (%) 79.3± 27.6 81.2± 14.5 79.8± 13.7

Specificity (%) 70.2± 34.5 62.7± 31.0 75.5± 15.2

Accuracy (%) 74.5± 19.5 75.0± 15.4 77.1± 12.3
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