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Abstract— Tracheal respiratory sound analysis is a simple
and non-invasive way to study the pathophysiology of the
upper airways; it has recently been used for acoustical flow
estimation and sleep apnea diagnosis. However in none of the
previous studies, the accuracy of acoustical flow estimation
was investigated neither during sleep nor in people with
obstructive sleep apnea (OSA). In this study, we recorded
tracheal sound, flow rate and head position from 11 individuals
with OSA during sleep and wakefulness. We investigated two
approaches for calibrating the parameters of acoustical flow
estimation model based on the known data recorded during
wakefulness and sleep. The results show that the acoustical
flow estimation parameters change from wakefulness to sleep.
Therefore, if the model is calibrated based on the data recorded
during wakefulness, although the estimated flow follows the
relative variations of the recorded flow, the quantitative flow
estimation error would be high during sleep. On the other hand,
when the calibration parameters are extracted from tracheal
sound and flow recordings during sleep, the flow estimation
error is less than 5%. These results confirm the reliability of
acoustical methods for estimating breathing flow during sleep
and detecting the partial or complete obstructions of the upper
airways during sleep.

I. INTRODUCTION

Tracheal respiratory sounds analysis is a simple and non–

invasive technique to study the pathophysiology of upper

airways. It has been used for respiratory flow estimation [1,

2], investigation of the upper airways abnormalities such as

wheezes, tracheal stenosis, and airway obstructions [3-6].

One of the main applications of acoustical flow estimation

is to detect the upper airway abnormalities and examine

obstructions in the upper airways during sleep, specially

in patients at risk of obstructive sleep apnea (OSA). How-

ever, all the previous studies that investigated the flow–

sound relationship and acoustical estimation of respiratory

flow were focused on data of non-OSA individuals during

wakefulness [1, 2, 7-11].

OSA is highly prevalent in the general population, ap-

proaching about 24% of men and 9% of women aged 30−60
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years old [12]. The main consequences of sleep apnea are

daytime sleepiness, increased risk of cardiovascular and cere-

brovascular disease, traffic accidents, and impaired quality of

life [13-16]. OSA is defined as periods of airflow cessation

(apnea) or reduced airflow by more than 30% (hypopnea)

associated with a minimum of 4% drop in blood’s oxygen

saturation level [17]. The severity of sleep apnea is usually

measured by apnea–hypopnea index (AHI) which shows the

number of apnea and hypopnea events per hour.

Full night polysomnography (PSG) is considered as the

gold standard method for sleep apnea diagnosis [17, 18].

However, the high cost of PSG and the high prevalence of

OSA in the general population have persuaded researchers

to look for portable monitoring devices, such as acoustic

techniques, for sleep apnea monitoring [5, 6, 19-22]. How-

ever, the previous studies on flow–sound relationship were

all focused on data of awake non–OSA individuals. It is

important to note that the relationship between tracheal sound

and flow may change from wakefulness to sleep and it might

also be different between OSA and non-OSA individuals.

Therefore, in order to implement acoustic flow estimation

algorithms for sleep studies, it is important to investigate the

accuracy of the methods during sleep and in individuals with

OSA.

In a previous study, we developed a robust acoustic method

for flow estimation. The method’s performance was verified

on data of 93 healthy individuals during wakefulness, and its

accuracy was found to be greater than 90% [11]. In this study,

we investigated acoustic flow estimation in individuals with

OSA during sleep. The goal of this study was to investigate

how the model parameters were changing from wakefulness

to sleep, and to quantitatively validate the flow estimation

accuracy during sleep.

II. METHOD

A. Data

Data of this study were recorded from 11 (2 women)

individuals who were referred to the Misericordia Hospital

Sleep Disorders Center for full night sleep study. The study

was approved by the Biomedical Research Ethics board of

the University of Manitoba as well as the Miserecordia

Hospital prior to the clinical trial. Subjects were recruited

randomly with no strict limitations in terms of age, sex or

body mass index (BMI). The subjects’ detailed information

are shown in Table I. Tracheal sound was recorded by a Sony

microphone (ECM-77B) embedded in a chamber (diameter

of 6mm) and placed over the suprasternal notch of the
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TABLE I

ANTHROPOMETRIC INFORMATION OF THE SUBJECTS, BMI IS THE BODY

MASS INDEX, AND AHI IS THE APNEA/HYPOPNEA INDEX.

Parameter Range Average ± Std

Age [33− 59] 46.5± 7.5

Height [164− 188] 175.4± 7.9

BMI [25.8− 43.5] 32.3± 4.8

AHI [6.8− 116.9] 31.6± 29.9

TABLE II

AVERAGE AND STANDARD DEVIATION OF DATA(IN SECONDS) THAT

WERE EXTRACTED FROM THE SUBJECTS AT DIFFERENT POSITIONS.

Position Wakefulness (s) Sleep (s)

Supine (s) 66.1± 83.3 152.1± 133.5

Left (s) 30.8± 17.0 95.5± 45.4

Right (s) 32.7± 17.7 255.5± 457.1

subject’s neck with a double sided adhesive tape. Respiratory

flow was measured simultaneously by a full face mask

pneumotachograph (Fleisch No.3) connected to a differential

pressure transducer (Biopac, TSD127). An accelerometer

was taped on the patient’s forehead to monitor the head

position during sleep.

Full PSG study was running simultaneously with our

recording. We used the EEG recordings to monitor the

subject’s sleep stage. Since, sleep stage may change sound

properties, we extracted data during second stage of non-

REM sleep which was common among all of our subject. In

order to compare variation in the model parameters from

wakefulness to sleep, respiratory sounds and flow were

recorded from the subjects at different positions, while they

were awake. The sound signals were monitored manually,

and the periods void of noise and snore sounds were selected.

Table II shows average and standard deviation of the data

duration (in seconds) that were extracted from the subjects

at different positions during sleep and wakefulness.

B. Acoustical Flow Estimation

Different sources contribute to the generation of tracheal

sounds. In previous studies, it was shown that flow-sound

relationship in trachea follows a power law [1, 7, 8]; this

implies that tracheal sound’s energy and flow follow a linear

relationship in the logarithmic scale. This linear relationship

can be used to estimate flow from tracheal sound as:

logFest = á logEs + b́, (1)

where Fest is the estimated flow and Es is the tracheal

sound’s variance which represents the sound’s average power

[5]. Tracheal sounds were bandpass filtered in the frequency

range of [100 − 1000]Hz to remove the low- and high–

frequency noises, while keeping the main frequency com-

ponents of tracheal sounds. Tracheal sound’s variance was

calculated in windows of 50ms with 75% overlap between

the adjacent windows. Respiratory sounds are non-stationary

signals in general. To overcome this problem, in every

inspiratory/expiratory breath cycle, the sound segments for

which the corresponding flow rate was more than 60% of

the peak flow within that breath cycle were considered for

investigation.

For every subject, the model parameters á and b́ (Eq. 1)

must be derived through a calibration process. Furthermore,

it was shown that the rate of increase in sound’s average

power is not similar at different flow rates [10]; hence, using

the same model for all flow rates will cause over/under

estimation at the lower/higher flow rates than the flow rate

used for calibrating the model [23, 24]. Therefore, the model

was modified as:

logFest = Ēs/Ēbase × á× log (Es) + b́ (2)

= Ēs ×
[

á/Ēbase

]

× log (Es) + b́,

where Ē is the average function, Es is the sound’s variance in

the overlapping windows of current breath cycle, and Ebase

is the sound’s variance in the breath cycle used for calibrating

the model.

Two approaches were applied to calibrate the model and

to estimate the model parameters. In the first approach, we

investigated the possibility of using the subject’s data during

wakefulness to calibrate the model and estimate flow during

sleep. In this approach, the model was calibrated using one

breath cycle with known flow recorded during the wake time

at a similar head position. In the second approach, one breath

cycle with known flow during sleep was used to calibrate the

model and estimate parameters á and b́. Analysis of variance

(ANOVA) was used to find the statistical significance (p-

value <0.05) of variations in the model parameters from

wakefulness to sleep. Also, for every calibration scheme, the

total flow estimation error was estimated for each individual

during sleep:

Error =
mean(F − Fest)

2

mean(F 2)
× 100, (3)

where, F and Fest represent real and estimated values of

flow, respectively. The values of error were averaged among

all subjects for inspiratory and expiratory phases.

III. RESULTS

Although, we used data of every individual to calibrate

the flow estimation model parameters, the parameters were

different during wakefulness and sleep. However, the results

of statistical analysis showed that the changes in model

parameters were not significant except for b́ during expi-

ration (Table III). Figure 1 shows the average and standard

deviation of the model parameters (Eq. 2) among all subjects

during wakefulness and sleep, which comply with the results

presented in Table III.

Figure 2a shows samples of the recorded flow from a

subject during sleep and at left position. The results of

flow estimation based on the first and the second calibration

schemes are shown in Fig. 2b and 2c, respectively. From

these results, it is clear that when the model parameters

were calibrated based on wakefulness data at the similar

3641



TABLE III

THE RESULTS OF ANOVA ANALYSIS (P–VALUES) FOR CHANGES IN THE

FLOW ESTIMATION MODEL PARAMETERS FROM WAKEFULNESS TO SLEEP

(* INDICATES SIGNIFICANT RESULTS).

Parameter Inspiration Expiration

á 0.49 0.71

b́ 0.32 0.03∗

Wake Sleep
0

0.02

0.04

0.06

0.08

a
´

Insp

Exp

Wake Sleep
−1.5

−1

−0.5

0

b
´

Insp

Exp

(a) (b)

Fig. 1. Average and standard deviation of model parameters (Eq. 2) among

all subjects during wakefulness and sleep, a) á and b) b́.

position (first approach), the estimated flow can only follow

the relative variations in the actual flow; while by calibrating

the model based on the sleep data (second approach), the

estimated flow follows the actual flow quantitatively.

Figure 3 shows the average and standard deviation of the

quantitative flow estimation errors among all subjects for

different calibration approaches. For subjects with data in

more than one body position, the errors at different positions

were averaged. As expected, the results show that the flow

estimation error is significantly higher for the first calibration

approach than the second one. Total flow estimation errors

were averaged among all individuals (Table IV); for the

second approach they were found to be 2.3±3.2% and 3.5±
4.6% during inspiration and expiration phases, respectively.

IV. DISCUSSION

Tracheal sounds analysis is a practical and non–invasive

tool for investigating the pathophysiology of the upper air-

ways and acoustical flow estimation [1, 2, 25, 26]. One of

the main applications of tracheal sounds analysis is acoustical

flow estimation to determine the cessations or reductions of

breathing flow during sleep, and detect apnea and hypopnea

events during sleep. For sleep apnea monitoring, it is not

necessary to have a quantitative estimation of flow rate.

TABLE IV

AVERAGE AND STANDARD DEVIATION OF FLOW ESTIMATION ERRORS

AMONG ALL SUBJECTS FOR DIFFERENT CALIBRATION SCHEMES.

Calibration based on data from
Error (%)

Wakefulness Sleep

Inspiration 10.53± 21.06 2.26± 3.17

Expiration 23.96± 17.38 3.46± 4.56
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Fig. 2. Examples of flow estimation results during sleep from data of
subject S11 at left position. A) recorded flow, and estimated flow based on
b) first calibration approach, and c) second calibration approach.
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Fig. 3. Average and standard deviation of the flow estimation error for
different calibration approaches during inspiration and expiration phases.

For these applications, the relative values of flow would be

enough to detect apnea and hypopnea events.

Having said that, it is still of interest to examine the

accuracy of flow estimation algorithm during sleep, as it will

be an indicator of the reliability of relative flow estimation

results. More importantly, it would be helpful to verify the

possibility of calibrating the model at wakefulness and apply

it to the sleep data. Therefore, we used two approaches

to calibrate the flow–sound model and calculate the model

parameters. In the first approach the goal was to study the

possibility of using the recorded data during wakefulness to

calibrate the model and estimate flow during sleep. If suc-
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cessful, this method would have greatly simplified the flow

estimation algorithm. In the second approach, we used sleep

data to calibrate the model parameters and estimate flow

during sleep. The results showed that regardless of the head

position, the model parameters change from wakefulness to

sleep.

When the model was calibrated using the wakefulness

data, the estimated flow during sleep was following the rela-

tive variations in the real flow rate (Fig. 2–a). However, due

to differences in the model variables during wakefulness and

sleep, the first approach for calibrating the model variables

can not give an accurate estimation of the quantitative flow

rate (Fig. 2–a) and the estimation errors were high (Fig. 3 and

Table IV). On the other hand, by using the second calibration

method, the model followed the variation of flow signal

with small errors of less than 5% during both respiratory

phases (Fig. 3 and Table IV). This confirms the reliability of

acoustical flow estimation for investigating flow variations

during sleep. However, it still needs calibration with one

known breath during sleep.

Our study had a few limitations which were mainly

imposed by recording flow with a full face mask. Because of

the difficulties of breathing through the mask, we considered

patients with BMI of less than 40 and younger than 60 years

old, who would have less difficulty to breathe with the mask.

We had no control on the sex or AHI of the recruited patients.

Data was recorded in the hospital with no control on the

environmental noises and conditions. Furthermore, the use

of face mask made it difficult for patients to fall asleep, and

consequently increased patients’ movements. Theses factors

increase the noise level of the recorded signal, and deteriorate

the signal to noise ratio. Despite the experimental apparatus

limitations, the results of this study are very encouraging as

for the first time, it verifies the accuracy of acoustical flow

estimation during sleep in individuals with OSA.
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