
  

  

Abstract— It is possible to replace amputated limbs with 

mechatronic prostheses, but their operation requires the user’s 

intentions to be detected and converted into control signals sent 

to the actuators. Fortunately, the motoneurons (MNs) that 

controlled the amputated muscles remain intact and capable of 

generating electrical signals, but these signals are difficult to 

record. Even the latest microelectrode array technologies and 

targeted motor reinnervation (TMR) can provide only sparse 

sampling of the hundreds of motor units that comprise the 

motor pool for each muscle. Simple rectification and integration 

of such records is likely to produce noisy and delayed estimates 

of the actual intentions of the user. We have developed a novel 

algorithm for optimal estimation of motor pool excitation based 

on the recruitment and firing rates of a small number (2-10) of 

discriminated motor units. We first derived the motor 

estimation algorithm from normal patterns of modulated MN 

activity based on a previously published model of individual MN 

recruitment and asynchronous frequency modulation. The 

algorithm was then validated on a target motor reinnervation 

subject using intramuscular fine-wire recordings to obtain 

single motor units.    

I. INTRODUCTION 

hen humans perform a motor task, the central nervous 

system (CNS) excites the alpha motoneurons (MNs) to 

activate the muscles, which in turn actuate the skeletal 

segments to perform the task. For amputees, the motor 

pathway - from supraspinal structures to spinal cord to 

peripheral nerve - remains intact and capable of generating 

and transmitting electrical signals. The activity of surviving 

MNs can be recorded from the ventral horn, ventral roots [1] 

or peripheral nerves [2] to infer the prosthesis user’s 

intentions and to control the prosthetic actuators (Fig.1), but 

only if the signals enable a rapid and accurate estimate of the 

excitatory drive to the whole pool of MNs.  

 

Fig.1. Stages of neural signal transmission for human motor control system. 

Even with the state-of-the-art microelectrode array 

technologies, only a few of the hundreds of MUs supplying 

each of the many amputated muscles (the MN pool, MNP) are 

likely to be recorded. A given ventral root or peripheral nerve 
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trunk normally innervates on the order of 10-20 functionally 

distinct muscles. Obtaining 100 channels of data from ventral 

root nerve or TMR muscle is challenging and the average 

yield rate of discriminable units tends to be less than one unit 

per channel. This means any single MNP will be represented 

by ~5 MUs on average but with a large stochastic range.  

In an early study from Hoffer et al [1, 3], a total of 150 fine 

flexible wire microelectrodes were implanted chronically in 

the fifth lumbar ventral root of 17 cats during locomotion on a 

treadmill. These microelectrodes yielded records of the 

natural discharge patterns of 164 individual axons, where 

only 51 axons were identified as MNs projecting to the 

anterior thigh muscle group. Similarly, targeted motor 

reinnervation results in patchy innervations [4, 5]. EMG 

signals recorded transcutaneously or intramuscularly are 

likely to consist of small numbers of discriminable single 

MUs [6] whose amplitude may not accurately reflect their 

relative MN size or recruitment order.  

The amplitudes of the action potentials recorded from each 

MU depend on the vagaries of electrode location with respect 

to the current source of the MU (whether that source is the 

motor axon or the patch of muscle fibers that has been 

reinnervated) rather than the size or recruitment order of the 

MU itself. Simply rectifying and integrating the electrical 

signals of MUs, as is done with gross EMG from intact 

muscles [7], may not produce an accurate estimate of MNP 

excitation. Thus, the challenge is to develop an algorithm that 

can make the best possible estimate of MNP excitation from 

the recruitment and firing rates of a small number (2-10) of 

discriminable MUs.   

II. ALGORITHM DESIGN 

The firing frequency of early recruited MUs correlates 

well with onset of the simultaneously recorded EMG signals 

from the whole muscle in animals, which, in turn, reflects the 

excitation of the whole MNP. The later recruited MUs 

generally start firing when the excitation reaches a specific 

threshold level. Their frequency is then modulated according 

to the time course of the excitation amplitude above this 

threshold, which can be measured from the EMG signals [1].  

We used these properties to design a novel estimation 

scheme for the MNP activation over the entire range of 

recruitment. The algorithm is called Sparse Optimal Motor 

Estimation (SOME). It works by mapping the instantaneous 

firing rate of each recorded MU into the excitation level that 

tends to cause that MU activity. The SOME algorithm 

predicts a total excitation level for the MNP, which can be fed 

into a model of the limb to estimate actual muscle force 

output and the resulting kinematics.   
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A. Sparse Sampling of MNP 

We first set the parameters for a MNP recruitment model 

with N discriminable MUs. The relationship between the net 

excitatory drive  and firing rate for each  was defined 

as , . The MNP recruitment model is fully 

defined when all N MUs are available and the dimensionality 

of the MN set is N. The challenging problem is how to 

reconstruct the net excitatory drive  from a sparse sampling 

of the entire MNP, which has a much smaller number of 

discriminable MUs than N. A simple saturating recruitment 

model is utilized, in which the slow MU starts to fire at 

5imp/s when excitation reaches 10mV, and the firing rate 

saturates at the 20imp/s when the excitation input is 25mV 

and above. The fast MU starts to fire at 10imp/s when 

excitation reaches 20mV and plateaus at a peak firing rate of 

40imp/s when the excitation exceeds 30mV. The firing rate 

ranges are based on the default values in Virtual Muscle [8], 

which normalizes firing rates according to , the firing 

frequency that produces half the maximal tetanic force for 

each MU (10 imp/s for slow MU, 20 imp/s for fast MU).  

In the example provided here, the sparse MNP model has 

only two MUs:  (the first recruited slow unit) and  

(the last recruited fast unit). For each motor unit , 

 

is the instantaneous firing rate of  spike 

at the spike timing . It is also a function of the excitation 

input at the sampled spike timing, which is defined as 

., and their firing rates over the full range of net 

excitatory drive to the MNP were simulated according to the 

relationship shown in Figure 2. 

 

 
Fig 2. Simulated firing relationship of two MUs in a saturating MNP. 

 

 
Fig3. The spikes of two MUs of the entire motor neuron pool 

 

A simple triangular ramp was used as the excitation input 

approximating similar physiological experiments [9, 10] and 

simulated spike occurrences for the two MUs are depicted in 

Figure 3. The histogram distribution (unfilled bar) is plotted 

for the spike timing with bin size of 50ms under the 

normalized excitation input (scale on the right). The 

aggregate activity of the asynchronous units is very noisy, 

even when integrated into 50ms bins typical for updating 

command signals to prosthetic systems.  

B. Sparse Optimal Motor Estimation Algorithm 

The frequent occurrence of individual MU spikes provides 

an opportunity to implement much more frequent and less 

noisy estimates of MNP excitation, which is exploited by the 

SOME algorithm: 

 

Sparse Optimal Motor Estimation Algorithm 

Input: Spike timing vector of observed MUAPs  
 

Input: Calibrated function  for observed  

Output: Estimated excitation input  
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2  for  

3   

3     WHILE  

4          IF  
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6              for  
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9 
             for 
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11                 

12     END WHILE 
13 END 

 

SOME algorithm employs different strategies for rising 

ramp and falling ramp. After determining the rising trend 

(line 4-7), when the firing rate for a given MU at the previous 

estimate of excitation level is less than or equal to the current 

instantaneous spike rate,  the estimation can only be updated 

on the occurrence of each successive MU spike, so estimate 

tends to lag behind the actual MNP excitation. In the falling 

trend scenario (line 8-11), when a spike is expected given the 

previous excitation level and the time elapsed since the last 

spike for all MUs, the absence of a spike that is “due” to occur 

given the previous interval can be used to estimate the 

maximal level of excitation that is consistent with the absence 

of spikes.  If no spikes occur in any MUs, then the excitation 

estimate falls rapidly from one exponential to another 

according to the lowest trajectory and updates as exponential 

decay (line 10) where  is the decreasing rate that could be 

arbitrarily set between 0 and 1.   

The output of the SOME algorithm is illustrated by the 

gray solid trace in Figure 4. For comparison, the true 

excitatory input is plotted in red ramp trace and the actual 

spike occurrences are labeled by dots and triangle with 

sequential number). As excitation increases (  i), the 

first spike (#1) and subsequent spikes (#2-9) timing provides 

successively higher and momentarily accurate estimates of 

the total excitation drive. As excitation decreases (  

), the estimates start to drop as individual spikes that were 

“due” to occur (e.g., spike #14) given the previous (e.g., spike 

#13) estimate fail to occur. The interval between individual 
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motor unit action potential (MUAP) is fairly long (100 to 

200ms for 10 to 5imp/s, respectively) compared to the rate at 

which the excitation signal to the MNP may actually be 

modulated. Waiting for the next spike in a given train or 

aggregating the asynchronous events and taking a running 

average tends to be slow and/or noisy; therefore it is 

imperative to derive as much information as possible from the 

timing of each spike in MUAP trains. 

 

 
Fig 4. Estimated excitation input (gray solid line) based on the MUAPs from 

the slow MU (dot) and fast MU (triangle) using proposed SOME algorithm 

III. VALIDATION WITH EXPERIMENTAL DATA 

 In order to use the SOME algorithm with an amputee, it is 

necessary to calibrate the threshold and frequency modulation 

of each available MU in terms of the intended excitation to 

each MNP.  In validation experiments using intact human or 

animal subjects, the gross EMG from the parent muscle is 

available for calibration, but no such signal is available from 

an amputee. Instead, it will be crucial to instruct subjects to 

perform a set of virtual movements with systematic ramping 

of effort to associate the MU activity with a particular muscle 

function. In the case of muscles operating on multiple degrees 

of freedom in the skeletal system, the imputed membership in 

a MNP will have to be extracted based on statistical 

correlations with multiple virtual movements that would 

normally require different combinations of muscle activation, 

which remain to be developed. In this experiment, a shoulder 

disarticulated amputee with TMR surgery was tracking a 

“virtual ramp of effort” of elbow extension by matching the 

integrated and smoothed surface EMG (sEMG) to a slowly 

rising visual ramp up to what the subject perceived was 

his/her maximal voluntary contraction (MVC). 

The intramuscular EMG (iEMG) signals were recorded 

from bipolar fine wire electrodes (CareFusion) using a 

10-channel Motion Lab Systems MA300 system with x4000 

gain and sampled at 10 kHz by a National Instruments 

USB-6218 DAQ. The signal was bandpass filtered between 

10Hz and 2KHz. Both the sEMG and iEMG signals were 

rectified, filtered and normalized to the MVC level. Two MU 

firing patterns were discriminated from the iEMG signal 

according to their distinctive waveforms (Fig. 5) during a 

voluntary ramp up to MVC. Their instantaneous firing rates 

were calibrated to excitatory drive as estimated from the 

smoothed sEMG (Fig. 6). The SOME algorithm was used to 

estimate MNP excitation during the ramp effort (red trace in 

Fig.7), which has been smoothed over 50ms bins for 

comparison with the similarly smoothed sEMG (light gray 

trace) and iEMG (dark gray trace).   

 

 

Fig 5.  Extracted spike time and motor unit waveforms (20ms duration inserts) 

from the intramuscular EMG signal (top) during ramp effort. 

 

 
Fig 6. The instantaneous firing rates of the two MUs as a function of 

normalized sEMG amplitude from Fig. 5. 

 

 

Fig 7. Comparison of SOME algorithm output (red trace) to sEMG (light 

gray trace) and iEMG (dark gray trace). 

IV. DISCUSSION AND CONCLUSION 

The validation experiment serves only to demonstrate the 

functionality of the SOME algorithm.  It remains to be tested 

using novel data sets from those used to calibrate the MU 

firing rates. Such tests would preferably include more rapid 

fluctuations of effort, which would take advantage of the 

algorithm’s ability to estimate excitation without the delays 

inherent in smoothing functions.  

The use of the SOME algorithm assumes that there are no 

false positives or false negatives in the MU spike 

discrimination.  The incidence of such errors will vary greatly 

with the method and quality of the recordings. A missed spike 

in a single MU train will result in an instantaneous drop of the 
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perceived rate. Such an error would be rapidly corrected if 

other MUs were contributing but could result in a substantial 

underestimate if only the one MU was active.  Extra spikes 

such as misclassification of another MU can result in 

unphysiologically high perceived firing rates, which will need 

to be capped by other refinements to the algorithm. Because 

actual muscle recruitment tends to change smoothly during 

voluntary activity such as controlling prosthesis, a Kalman 

filter could probably be used to improve performance, but 

that is outside the scope of this study.   

The sample record available from the TMR patient 

suggests that the SOME algorithm may be more suitable for 

ventral root and peripheral nerve recordings, where the unit 

waveforms tend to be much briefer and there is less 

background activity [1]. The relatively long and complex unit 

signatures obtained from these TMR muscles (e.g. MU2 in 

Fig. 5) may be a feature of the reinnervation process and will 

make it particularly difficult to obtain suitable spike 

discrimination when multiple units are active because of their 

tendency to overlap and occlude each other.  

In the recordings available here from a slow ramp, there 

was relatively little difference between the rectified and 

smoothed sEMG and iEMG, so the SOME algorithm would 

not have provided any advantage. The SOME output had a 

somewhat different time course from the smoothed EMGs 

that may actually reflect the stepwise force generation typical 

of subjects following a target ramp with only visual feedback. 

There is no reason to believe that the EMG generated by the 

highly unusual motor unit distributions following TMR are an 

appropriate “gold standard” for the effort of the user.  

Whether SOME output is more accurate and useful for 

control will not be known until the two types of signal 

processing are compared in a complete control loop with a 

prosthesis capable of rapid responses to commands. 

Studies have been done on sEMG signal to extract the 

firing of different motor units together with their recruitment 

time [12][13]. A linear relationship between MU firing rates 

and rectified and smoothed iEMG from the same normal 

muscle has been demonstrated experimentally before [14]. It 

tends to be a common initial firing frequency for MUs of a 

given type, and their firing frequencies converge to a single 

maximal firing frequency at maximal activation. There is a 

suggestion that the frequency modulation of earlier recruited 

units is hyperbolic rather than linear [15].  In order to use the 

SOME algorithm with an amputee, it is necessary to calibrate 

the threshold and frequency modulation of each available MU 

terms of the intended excitation to each MNP. In validation 

experiments using intact human or animal subjects, the gross 

EMG from the parent muscle is available for calibration, but 

no such signal is available from an amputee.  Instead, it will 

be crucial to instruct subjects to perform a set of virtual 

movements with systematic ramping of effort to associate the 

MU activity with a particular muscle function.  In the case of 

muscles operating on multiple degrees of freedom in the 

skeletal system, the imputed membership in a MNP will have 

to be extracted based on statistical correlations with multiple 

virtual movements that would normally require different 

combinations of muscle activation, which remain to be 

developed. 
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